Energieausweis für Wohngebäude

есотесн

gemäß Önorm H 5055 und Richtlinie 2002/91/EG

Niederösterreich

GEBÄUDE

Mehrfamilienhaus Gebäudeart

Erbaut

2012

Gebäudezone Stiege 5

Katastralgemeinde

Wiener Neustadt

Straße

Werftgasse

KG-Nummer

23443

PLZ/Ort

2700 Wiener Neustadt

Einlagezahl

9836

Eigentümer

FRIEDEN gemeinn. Bau- u. Siedlungsgen.m.b.H.

1130 Wien, Hietzinger Hauptstr. 119

Grundstücksnummer 1808/12

SPEZIFISCHER HEIZWÄRMEBEDARF BEI 3400 HEIZGRADTAGEN (REFERENZKLIMA)

A ++

A +

HWB-ref = 23 kWh/m²a

В

C

F

G

ORIGINAL

ERSTELLT

Erstellerin

Dipl. Ing. Gerhard Burian

Organisation

DI Gerhard Burian ZT GmbH

Erstellerin-Nr.

Ausstellungsdatum

04.09.2012

GWR-Zahl

Gültigkeitsdatum

04.09.2022

Geschäftszahl 12/3355

Interschrift

er Energieausweis entspricht den Vorgaben der Richtlinie 6 "Energieeinsparung und Wärn erreichischen Institutes für Bautechnik in Umsetzung der Richtlinie 2002/91/EG über die G Gebäuden und des Energieausweis-Vorlage-Gesetzes (EAVG).

> A-Zb20 Wartmannstetten Berechnet mit ECOTECH Software, Version 3.1. Ein Produkt

Energieausweis für Wohngebäude

gemäß Önorm H 5055 und Richtlinie 2002/91/EG OIB

GEBÄUDEDATEN

Brutto-Grundfläche 1.694,32 m²
beheiztes Brutto-Volumen 5.378,5 m³
charakteristische Länge (Ic) 1,95 m
Kompaktheit (A/V) 0,51 1/m
mittlerer U-Wert (Um) 0,31 W/m²K
LEK-Wert 24

KLIMADATEN

Klimaregion

N/SO

Seehöhe

265 m

Heizgradtage

3419 Kd

Heiztage

173 d

Norm-Außentemperatur

-13,1 °C

mittlere Innentemperatur

20 °C

WÄRME- UND ENERGIEBEDARF

enbezogen 9.527 kWh/a	spezifisch	zonenbezogen	spezifisch		
9.527 kWh/a	00 00 1-14/1- /2-				
	23,33 kWh/m²a	39.406 kWh/a	23,26 kWh/m²a	35,42 kWh/m²a	erfüllt
		21.645 kWh/a	12,78 kWh/m²a		
		19.359 kWh/a	11,43 kWh/m²a		
		15.107 kWh/a	8,92 kWh/m²a		
		44.805 kWh/a	26,44 kWh/m²a		
		105.856 kWh/a	62,48 kWh/m²a		
		105.856 kWh/a	62,48 kWh/m²a	69,00 kWh/m²a	erfüllt
			19.359 kWh/a 15.107 kWh/a 44.805 kWh/a 105.856 kWh/a	19.359 kWh/a 11,43 kWh/m²a 15.107 kWh/a 8,92 kWh/m²a 44.805 kWh/a 26,44 kWh/m²a 105.856 kWh/a 62,48 kWh/m²a	19.359 kWh/a 11,43 kWh/m²a 15.107 kWh/a 8,92 kWh/m²a 44.805 kWh/a 26,44 kWh/m²a 105.856 kWh/a 62,48 kWh/m²a

ERLÄUTERUNGEN

Heizwärmebedarf (HWB):

Vom Heizsystem in die Räume abgegebenen Wärmemenge die benötigt wird, um während der Heizsaison bei einer standardisierten Nutzung eine Temperatur von 20°C zu halten. Energiemenge die bei der Wärmeerzeugung und -verteilung verloren geht.

Heiztechnikenergiebedarf (HTEB): Endenergiebedarf (EEB):

Energiemenge die dem Energiesystem des Gebäudes für Heizung und Warmwasserversorgung

inklusive notwendiger Energiemengen für die Hilfsbetriebe bei einer typischen

Standardnutzung zugeführt werden muss.

Anhang zum Energieausweis gemäß OIB-Richtlinie 6 (8.1.2)

Verwendete Hilfsmittel und ÖNORMen:

Berechnungsverfahren: Monatsbilanzverfahren Klimadaten nach ÖNORM B 8110-5 Heizwärme- und Kühlbedarf nach ÖNORM B 8110-6 Transmissionsleitwert: Vereinfachte Berechnung nach 5.3 Lüftungswärmeverlust: Für Wohngebäude nach 7.3 Innere Wärmegewinne: Für Wohngebäude nach 8.2.1 Solare Wärmegewinne: Für Wohngebäude nach 8.3 Glasanteil gem. ÖNORM EN ISO 10077-1 Verschattungsfaktor vereinfacht nach 8.3.1.2.2 Wirksame Wärmekapazität: Vereinfachter Ansatz nach 9.1.2 für ... Bauweise Heiztechnik-Energiebedarf nach ÖNORM H 5056: Details siehe Angabeblatt Raumlufttechnik-Energiebedarf nach ÖNORM H 5057: Details siehe Angabeblatt Für den Nutzenergiebedarf der Luftheizung

Der Energieausweis wurde erstellt mit ECOTECH Software, Version 3.0

Ermittlung der Eingabedaten:

Geometrische Daten: Bestandsplan 0208/05/1001 bis /1006 vom 20.08.2012; Presoly

Architektur ZT GmbH

Bauphysikalische Daten: Dipl.Ing. Gerhard Burian ZT GmbH

Weitere Daten:

Baubescheid 1RB/30b-2008 vom 24.01.2012

Kommentare:

Das Gutachten wurde nach bestem Wissen aufgrund der erhobenen und bekannt gewordenen Sachverhalte verfasst. Sollten zukünftig weitere relevante Sachverhalte bekannt werden, die das Gutachten diesbezüglich zu ergänzen.

Diese Ausarbeitung ist geistiges Eigentum des Verfassers und damit gesetzlich geschützt. Jede Benützung, Veröffentlichung, Vervielfältigung, Überarbeitung oder Weitergabe an Dritte on Verbindung mit einer anderen Arbeit oder einem anderen Projekt bedarf der schriftlichen Zustimmung des Verfassers.

Nur die im Original unterfertigte Ausgabe des Gutachtens in gedruckter Version ("Hardcopy") ist rechtsgültig. Gegebenenfalls übergebene Ausgaben in digitaler Form haben gegenüber dem Original keine gleichberechtigte Bedeutung. Beilagen des schriftlichen Gutachtens in originaler Fassung, die ausschließlich in digitaler Form angefügt werden (z.B. Bild- oder Video-Informationen) zählen zum Gutachten und sind vom Rechtsausschluss nicht betroffen.

Resultieren auf Basis der gutachterlich getätigten Aussagen Ausführungsarbeiten, verpflichtet sich der Auftragnehmer vor Arbeitsbeginn alle Maße und Bedingungen, im Zusammenhang mit seiner Arbeit, auf der Baustelle verantwortlich zu überprüfen. Abweichung gegenüber dargestellten oder schriftlich festgehaltenen Angaben müssen dem Verfasser unverzüglich schriftlich mitgeteilt werden. Vor einem etwaigen Arbeitsbeginn sind dem Verfasser gültige Werkzeichnungen zur Genehmigung vorzulegen.

maximale U-Werte von Bauteile

Bauteil U (max) U (anf)

Wände gegen Außenluft 0,21 0,35 erfüllt

Kleinflächige Wände gegen Außenluft	-	0,70	
Trennwände zwischen Wohn- oder Betriebseinheiten	-	0,90	
Wände gegen unbeheizte, frostfrei zu haltende Gebäudeteile	0,58	0,60	erfüllt
Wände gegen unbeheizte oder nicht ausgebaute Dachräume	-	0,35	
Wände gegen andere Bauwerke an Grundstücks- bzw. Bauplatzgrenzen	-	0,50	
Erdberührende Wände und Fußböden	-	0,40	
Fenster, Fenstertüren, verglaste oder unverglaste Türen gegen unbeheizt	1,38	2,50	erfüllt
Fenster, Fenstertüren gegen Außenluft	1,38	1,40	erfüllt
Sonstige Fenster, Fenstertüren, verglaste oder unverglaste Außentüren	1,59	1,70	erfüllt
Dachflächenfenster gegen Außenluft	=	1,70	
Sonstige transparente Bauteile gegen Außenluft	-	2,00	
Decken gegen Außenluft, gegen Dachräume	0,17	0,20	erfüllt
Innendecken gegen unbeheizte Gebäudeteile	0,21	0,40	erfüllt
Innendecken gegen getrennte Wohn- und Betriebseinheiten	-	0,90	

Anforderungen an wärmeübertragende Bauteile

Alle (relevanten) Anforderungen an die wärmeübertragenden Bauteile sind erfüllt.

Heizung

Wärmeabgabe

Regelung Abgabesystem Verbrauchsermittlung Einzelraumregelung mit Thermostatventilen Radiatoren, Einzelraumheizer (70/55 °C) Individuelle Verbrauchsermittlung und Heizkostenabrechnung (Fixwert)

Wärmeverteilung

Lage der Verteilleitungen
Lage der Steigleitungen
Lage der Anbindeleitungen
Dämmung der Verteilleitungen
Dämmung der Anbindeleitungen
Dämmung der Anbindeleitungen
Armaturen der Verteilleitungen
Armaturen der Steigleitungen
Armaturen der Anbindeleitungen
Länge der Verteilleitungen [m]
Länge der Steigleitungen [m]
Länge der Anbindeleitungen [m]

Unbeheizt Unbeheizt 100% beheizt 2/3 Durchmesser 2/3 Durchmesser 1/3 Durchmesser Armaturen gedämmt Armaturen gedämmt Armaturen gedämmt

72,56 (Default) 135,55 (Default) 948,82 (Default)

Keine Wärmespeicherung

Wärmebereitstellung (Zentral)

Bereitstellung Art Nah-/Fernwärme, Wärmetauscher Sekundärkreislauf

Warmwasser

Wärmeabgabe

VerbrauchsermittlungIndividuelle Verbrauchsermittlung und -abrechnung (Fixwert)Art der ArmaturenZweigriffarmaturen (Fixwert)

Kunststoff

Wärmeverteilung

Lage der VerteilleitungenUnbeheiztLage der SteigleitungenUnbeheiztDämmung der Verteilleitungen2/3 DurchmesserDämmung der Steigleitungen2/3 DurchmesserArmaturen der VerteilleitungenArmaturen gedämmtArmaturen der SteigleitungenArmaturen gedämmtZirkulationNein

Zirkulation Stichleitungen

Länge der Verteilleitungen [m] 24,62 (Default)
Länge der Steigleitungen [m] 67,77 (Default)
Länge der Stichleitungen [m] 271,09 (Default)
Zirkulation Verteilleitungen [m] 0,00 (Default)
Zirkulation Steigleitungen [m] 0,00 (Default)

Wärmespeicherung

Baujahr des Speichers ab 1994

Art des Speichers Indirekt beheizter Speicher (Öl, Gas, Fest, FW) ab 1994

BasisanschlussAnschlüsse gedämmtE-PatroneAnschluß nicht vorhandenHeizregisterSolarAnschluß nicht vorhanden

Wärmebereitstellung (Zentral)

Bereitstellung Warmwasserbereitung mit Heizung kombiniert

Solaranlage

Keine Solaranlage vorhanden

RLT

RLT Anlage

Art der Anlage Ohne Heiz- und Kühlfunktion (Lüftungsanlage)

Kühlung

Kein Kühlsystem vorhanden

Energiekennzahlen

Projekt: Wr.Neustadt - Werftgasse Datum: 4. September 2012 Blatt 1

HWB Referenzklima	23,33	kWh/m²a
HWB Standort	23,26	kWh/m²a
BGF (beheizt)	1.694,32	m²
Oberfläche (A)	2.765,14	m²
Bruttorauminhalt (V)	5.378,52	m³
AV	0,51	1/m
OI3 TGH-IC	59,75	-
Verminderung HWB Referenzklima für Förderung Mehrfamilienhaus	0,00	kWh/m²a
HWB Referenzklima für Förderung Mehrfamilienhaus	23,33	kWh/m²a

Berechnet mit ECOTECH Software, Version 3.1. Ein Produkt der BuildDesk Österreich GmbH; Snr: ECT-20080616XXXH580253

Optionen Heizwärmebedarf gemäß OIB-Richtline 6

Projekt: Wr.Neustadt - Werftgasse Datum: 4. September 2012 Blatt 2

	Allgen	neine Einstellungen											
Einreichung für	✓ Neubau	Sanierung	Bestand										
Bauweise	☐ leicht	☐ mittel	schwer schwer	sehr schwer									
Wärmebrückenzuschlag	vereinfacht 73 [W/K]	detailliert lt. Baukörpereingabe 0 [W/K]											
Keller	✓ Keller ungedämmt	☐ Keller gedämmt (Wände und Fußböden unterschreiten U-Wert von 0.35 [W/(m²K)])											
Verschattung	□ vereinfacht	detailliert lt. Baukörpereingabe											
Erdverluste	✓ vereinfacht	detailliert lt. EN ISO 13370											
Anforderungen													
Bestimmung	ab 1.1.2010												
		Lüftung											
Ant don't Office	and the said of the said of the said												
Art der Lüftung	mechanische Lüftung												
Wärmetauscher	Gegenstromwärmetauso	cher (75 %)											
Luftwechsel n50 aus Blower-Door-Test	Luftwechselrate n50 zwi	schen 0,6 und 1,5/h = 1/h											
Erdwärmetauscher	nicht berücksichtigt												
	Transpar	ente Wärmedämmung											
Transparente Wärmedämmung	nicht berücksichtigt												

Optionen Heizwärmebedarf gemäß OIB-Richtline 6

Projekt: Wr.Neustadt - Werftgasse Datum: 4. September 2012 Blatt 3

Gebäudetyp / Innere Gewinne

Nutzungsprofil	Mehrfamilienhaus		
Nutzungstage Jänner	d_Nutz,1 [d]	31	(Lt. ÖNORM B 8110-5)
Nutzungstage Februar	d_Nutz,2 [d]	28	(Lt. ÖNORM B 8110-5)
Nutzungstage März	d_Nutz,3 [d]	31	(Lt. ÖNORM B 8110-5)
Nutzungstage April	d_Nutz,4 [d]	30	(Lt. ÖNORM B 8110-5)
Nutzungstage Mai	d_Nutz,5 [d]	31	(Lt. ÖNORM B 8110-5)
Nutzungstage Juni	d_Nutz,6 [d]	30	(Lt. ÖNORM B 8110-5)
Nutzungstage Juli	d_Nutz,7 [d]	31	(Lt. ÖNORM B 8110-5)
Nutzungstage August	d_Nutz,8 [d]	31	(Lt. ÖNORM B 8110-5)
Nutzungstage September	d_Nutz,9 [d]	30	(Lt. ÖNORM B 8110-5)
Nutzungstage Oktober	d_Nutz,10 [d]	31	(Lt. ÖNORM B 8110-5)
Nutzungstage November	d_Nutz,11 [d]	30	(Lt. ÖNORM B 8110-5)
Nutzungstage Dezember	d_Nutz,12 [d]	31	(Lt. ÖNORM B 8110-5)
Nutzungstage pro Jahr	d_Nutz,a [d]	365	(Lt. ÖNORM B 8110-5)
Tägliche Nutzungszeit	t_Nutz,d [h]	24	(Lt. ÖNORM B 8110-5)
Tägliche Betriebszeit Heizung	t_h,d [h]	24	(Lt. ÖNORM B 8110-5)
Betriebstage Heizung pro Jahr	d_h,a [d]	365	(Lt. ÖNORM B 8110-5)
Innentemperatur Heizfall	theta_ih [°C]	20	(Lt. ÖNORM B 8110-5)
Temperatur unkonditionierter Raum	theta_iu [°C]	13	(Lt. ÖNORM B 8110-5)
Luftwechselrate Fensterlüftung	n_L,FL [1/h]	0,40	(Lt. ÖNORM B 8110-5)
Innere Gewinne Heizfall (bezogen auf	q_i,h,n [W/m²]	3,75	(Lt. ÖNORM B 8110-5)
Bezugsfläche BF)			
Tägl. Warmwasser-Wärmebedarf (bezogen auf	wwwb [Wh/(m²-d)]	35,0	(Lt. ÖNORM B 8110-5)
Bezugsfläche BF)			

Flächenheizung

Flächenheizung nicht berücksichtigt

Berechnet mit ECOTECH Software, Version 3.1. Ein Produkt der BuildDesk Österreich GmbH; Snr: ECT-20080616XXXH580253

Blatt 4

OI3-Index

Projekt: **Wr.Neustadt - Werftgasse** Datum: 4. September 2012

Bauteile		Fläche A	Wärmed. koeffiz U	PEI	GWP	AP
		[m²]	[W/m²K]	[MJ]	[kg CO2]	[kg SO2]
F1: AW Wohnung_PP	Außenwand	707,48	0,20	599.448,8	34.088,6	131,4
E9: DE über Stellplätze EG_bp	Decke über Außenluft (Durchfahrten, Erker,)	77,35	0,17	131.965,7	12.399,8	47,9
E1: DE über KG/TG_bp	Decke mit Wärmestrom nach unten	483,32	0,21	550.130,3	55.065,7	195,1
A1: Dach bekiest_bp	Dach ohne Hinterlüftung	605,50	0,16	1.710.977,0	83.824,5	402,7
E9a: DE über Fahrr./KIWA_bp	Decke mit Wärmestrom nach unten	44,83	0,19	66.296,2	6.508,3	21,9
F2: AW Wohnung zu Laubengang	Außenwand	357,72	0,21	469.549,6	32.330,6	114,3
F3: AW Wohnung zu Stgh_bp	Innenwand	168,09	0,30	220.188,1	15.217,3	54,3
F10: IW 2-schalig zu Stgh Stiege 1	Innenwand	48,58	0,58	81.968,2	7.382,7	24,4
IW Gemeinschaftsraum/KIWA Ziegel_bp	Innenwand	12,38	0,38	13.402,0	917,6	3,3
IW Gemeinschaftsraum/KIWA STB_bp	Innenwand	15,70	0,41	12.516,2	1.376,8	5,1
E3: DE Regelgeschoss_bp	Trenndecke	1.088,82	0,50	1.051.233,0	117.765,8	397,1
F01D: 80/145		5,80	1,46	6.889,3	491,9	4,1
T01C: 90/210		11,34	1,58	11.395,4	-488,5	7,5
F05D: 60/80		2,40	1,61	3.804,7	273,4	2,4
F03A: 170/230		15,64	1,26	24.383,9	1.278,9	6,9
F02A: 90/230		24,84	1,25	39.770,6	2.082,0	11,3
F03B: 170/230		46,92	1,26	73.151,6	3.836,6	20,7
F02C: 90/230		53,82	1,25	86.169,7	4.511,0	24,4
VGL 211/220		4,64	1,38	5.033,1	358,5	2,9
VGL 314/220		6,91	1,39	7.813,1	557,1	4,5
F02B: 90/230		20,70	1,25	33.142,2	1.735,0	9,4
VGL 180/220		7,92	1,42	9.333,3	666,2	5,5
F01A: 80/145		2,32	1,28	4.363,5	226,1	1,3
F01B: 80/145		6,75	1,43	7.547,7	538,0	4,4
T01A: 90/210		9,45	1,58	9.496,2	-407,1	6,3
F05B: 60/80		1,92	1,61	3.043,8	218,7	1,9
F01C: 80/145		6,96	1,46	8.267,1	590,2	4,9
T01B: 90/210		11,34	1,58	11.395,4	-488,5	7,5
F05C: 60/80		2,88	1,61	4.565,7	328,1	2,9
F05C: 60/80		0,48	1,61	760,9	54,7	0,5
F01C: 80/145		1,16	1,46	1.377,9	98,4	0,8
Summe		3.853,96		5.259.380,0	383.338,1	1.527,3
PEI(Primärenergiegehalt nicht	erneuerbar)			[MJ/m² l	KOF1	1.364,67

PEI(Primärenergiegehalt nicht erneuerbar)	[MJ/m² KOF] Punkte	1.364,67 86,47
GWP (Global Warming Potential)	[kg CO2/m² KOF] Punkte	99,47 74,73
AP (Versäuerung)	[kg SO2/m² KOF] Punkte	0,40 74,52
OI3-TGH OI3-TGH=(1/3.PEI + 1/3.GWP + 1/3.AP)	Punkte	78,57
Ol3-lc (Ökoindikator) Ol3-lc= 3 * Ol3-TGH / (2+lc)	Punkte	59,75
OI3-TGHBGF OI3-TGHBGF= OI3-TGH * KOF / BGF	Punkte	178,73
KOF BGF Ic	m² m² m	3853,96 1694,32 1,95

OI3-Index

Projekt: Wr.Neustadt - Werftgasse Datum: 4. September 2012 Blatt 5

OI3-Index

Projekt: Wr.Neustadt - Werftgasse Datum: 4. September 2012 Blatt 6

	Schichtbezeichnung	Lambda	Dichte	im Bauteil
	OI3-Bezeichnung	[W/mK]	[kg/m³]	
2)	Baumit EdelPutz 2mm	1,000		F1: AW Wohnung_PP
	zugeordnet: Kalk-Zementputz			5-
2)	CORBLANIT EPS F 16	0,040	18	F1: AW Wohnung_PP
	zugeordnet: Polystyrol (EPS f.			•
	Wärmedämmverbundsysteme WDVS)			
2)	POROTHERM 25-38 Objekt Plan	0,250	800	F1: AW Wohnung_PP
,	zugeordnet: Ziegel - Hochlochziegel porosiert			5 _
	<=800kg/m ³			
2)	Gipsputz, Kalkgipsputz	0,800	1.300	F1: AW Wohnung_PP
′	zugeordnet: Gipsputz	-,		F2: AW Wohnung zu Laubengang
	3			F3: AW Wohnung zu Stgh_bp
				F10: IW 2-schalig zu Stgh Stiege 1
				IW Gemeinschaftsraum/KIWA Ziegel_bp
				IW Gemeinschaftsraum/KIWA STB_bp
2)	Zementestrich	1,700	2.000	E9: DE über Stellplätze EG_bp
′	zugeordnet: Zementestrich	,		E1: DE über KG/TG_bp
	<u> </u>			E9a: DE über Fahrr./KIWA_bp
				E3: DE Regelgeschoss_bp
2)	7.2.5.2 Polyethylen-Folien Dicke d >=0,1 mm	0,500	980	E9: DE über Stellplätze EG_bp
,	zugeordnet: Polyethylenbahn, -folie (PE)	- 1		E1: DE über KG/TG_bp
	5			E9a: DE über Fahrr./KIWA_bp
				E3: DE Regelgeschoss_bp
2)	TRITTSCHALL DÄMMPLATTEN TDPS 25	0,042	100	E9: DE über Stellplätze EG_bp
-,	zugeordnet: Steinwolle Trittschalldämmung	٠,٠ ١ــ	.00	E1: DE über KG/TG_bp
				E9a: DE über Fahrr./KIWA_bp
				E3: DE Regelgeschoss_bp
2)	EPS Granulat zementgebunden bis 125 kg/m³	0,080	350	E9: DE über Stellplätze EG_bp
_,	zugeordnet: EPS-Granulat zementgeb. (125 < roh <=	0,000	000	E1: DE über KG/TG_bp
	350 kg/m³)			E9a: DE über Fahrr./KIWA_bp
	333 Ng/ /			E3: DE Regelgeschoss_bp
2)	Stahlbeton	2,500	2.400	E9: DE über Stellplätze EG_bp
_,	zugeordnet: Stahlbeton	2,000	2.100	E1: DE über KG/TG_bp
				A1: Dach bekiest_bp
				E9a: DE über Fahrr./KIWA_bp
				IW Gemeinschaftsraum/KIWA STB_bp
				E3: DE Regelgeschoss_bp
2)	STO Mineralwolle Dämmplatte [100]	0,040	149	E9: DE über Stellplätze EG_bp
_,	zugeordnet: Steinwolle 10 -14 cm mit Kleber und Dübel	2,0 10		
2)	Kunststoffdünnputz	0,900	1 200	E9: DE über Stellplätze EG_bp
,		0.900		
	zugeordnet: Kunstharzputz	0,900	1.200	
2)	zugeordnet: Kunstharzputz CORBI ANIT FPS W 20 10			F1: DF über KG/TG bp
2)	CORBLANIT EPS W 20 10	0,900		E1: DE über KG/TG_bp
	CORBLANIT EPS W 20 10 zugeordnet: Polystyrol EPS Trittschalldämmplatte	0,044	15	·
2)	CORBLANIT EPS W 20 10 zugeordnet: Polystyrol EPS Trittschalldämmplatte Dampfbremse		15	E1: DE über KG/TG_bp E1: DE über KG/TG_bp
1)	CORBLANIT EPS W 20 10 zugeordnet: Polystyrol EPS Trittschalldämmplatte Dampfbremse zugeordnet: Dampfbremse PE	0,044	15 980	E1: DE über KG/TG_bp
	CORBLANIT EPS W 20 10 zugeordnet: Polystyrol EPS Trittschalldämmplatte Dampfbremse zugeordnet: Dampfbremse PE Rundriesel 16/32	0,044	15 980	·
1)	CORBLANIT EPS W 20 10 zugeordnet: Polystyrol EPS Trittschalldämmplatte Dampfbremse zugeordnet: Dampfbremse PE Rundriesel 16/32 zugeordnet: Sand, Kies jeweils lufttrocken	0,044 0,500 0,700	15 980 1.800	E1: DE über KG/TG_bp A1: Dach bekiest_bp
1)	CORBLANIT EPS W 20 10 zugeordnet: Polystyrol EPS Trittschalldämmplatte Dampfbremse zugeordnet: Dampfbremse PE Rundriesel 16/32 zugeordnet: Sand, Kies jeweils lufttrocken Filtervlies	0,044	15 980 1.800	E1: DE über KG/TG_bp
1) 1)	CORBLANIT EPS W 20 10 zugeordnet: Polystyrol EPS Trittschalldämmplatte Dampfbremse zugeordnet: Dampfbremse PE Rundriesel 16/32 zugeordnet: Sand, Kies jeweils lufttrocken Filtervlies zugeordnet: Vlies (PE)	0,044 0,500 0,700 0,500	15 980 1.800 600	E1: DE über KG/TG_bp A1: Dach bekiest_bp A1: Dach bekiest_bp
1)	CORBLANIT EPS W 20 10 zugeordnet: Polystyrol EPS Trittschalldämmplatte Dampfbremse zugeordnet: Dampfbremse PE Rundriesel 16/32 zugeordnet: Sand, Kies jeweils lufttrocken Filtervlies zugeordnet: Vlies (PE) Vlies (PE)	0,044 0,500 0,700	15 980 1.800 600	E1: DE über KG/TG_bp A1: Dach bekiest_bp
1) 1) 1) 2)	CORBLANIT EPS W 20 10 zugeordnet: Polystyrol EPS Trittschalldämmplatte Dampfbremse zugeordnet: Dampfbremse PE Rundriesel 16/32 zugeordnet: Sand, Kies jeweils lufttrocken Filtervlies zugeordnet: Vlies (PE) Vlies (PE) zugeordnet: Vlies (PE)	0,044 0,500 0,700 0,500 0,500	15 980 1.800 600	E1: DE über KG/TG_bp A1: Dach bekiest_bp A1: Dach bekiest_bp A1: Dach bekiest_bp
1) 1) 1) 2)	CORBLANIT EPS W 20 10 zugeordnet: Polystyrol EPS Trittschalldämmplatte Dampfbremse zugeordnet: Dampfbremse PE Rundriesel 16/32 zugeordnet: Sand, Kies jeweils lufttrocken Filtervlies zugeordnet: Vlies (PE) Vlies (PE) zugeordnet: Vlies (PE) 4.434.002 XPS-G (glatte Oberfl., Zellgas Luft, d < 70	0,044 0,500 0,700 0,500	15 980 1.800 600	E1: DE über KG/TG_bp A1: Dach bekiest_bp A1: Dach bekiest_bp
1) 1) 1) 2)	CORBLANIT EPS W 20 10 zugeordnet: Polystyrol EPS Trittschalldämmplatte Dampfbremse zugeordnet: Dampfbremse PE Rundriesel 16/32 zugeordnet: Sand, Kies jeweils lufttrocken Filtervlies zugeordnet: Vlies (PE) Vlies (PE) zugeordnet: Vlies (PE) 4.434.002 XPS-G (glatte Oberfl., Zellgas Luft, d < 70 mm)	0,044 0,500 0,700 0,500 0,500	15 980 1.800 600	E1: DE über KG/TG_bp A1: Dach bekiest_bp A1: Dach bekiest_bp A1: Dach bekiest_bp
1) 1) 1) 2)	CORBLANIT EPS W 20 10 zugeordnet: Polystyrol EPS Trittschalldämmplatte Dampfbremse zugeordnet: Dampfbremse PE Rundriesel 16/32 zugeordnet: Sand, Kies jeweils lufttrocken Filtervlies zugeordnet: Vlies (PE) Vlies (PE) zugeordnet: Vlies (PE) 4.434.002 XPS-G (glatte Oberfl., Zellgas Luft, d < 70 mm) zugeordnet: Polystyrol XPS, CO2-geschäumt	0,044 0,500 0,700 0,500 0,500 0,041	15 980 1.800 600 600 38	E1: DE über KG/TG_bp A1: Dach bekiest_bp A1: Dach bekiest_bp A1: Dach bekiest_bp A1: Dach bekiest_bp
1) 11) 11) 22)	CORBLANIT EPS W 20 10 zugeordnet: Polystyrol EPS Trittschalldämmplatte Dampfbremse zugeordnet: Dampfbremse PE Rundriesel 16/32 zugeordnet: Sand, Kies jeweils lufttrocken Filtervlies zugeordnet: Vlies (PE) Vlies (PE) zugeordnet: Vlies (PE) 4.434.002 XPS-G (glatte Oberfl., Zellgas Luft, d < 70 mm) zugeordnet: Polystyrol XPS, CO2-geschäumt Polymerbitumen-Dichtungsbahn	0,044 0,500 0,700 0,500 0,500	15 980 1.800 600 600 38	E1: DE über KG/TG_bp A1: Dach bekiest_bp A1: Dach bekiest_bp A1: Dach bekiest_bp
11) 11) 11) 22) 22)	CORBLANIT EPS W 20 10 zugeordnet: Polystyrol EPS Trittschalldämmplatte Dampfbremse zugeordnet: Dampfbremse PE Rundriesel 16/32 zugeordnet: Sand, Kies jeweils lufttrocken Filtervlies zugeordnet: Vlies (PE) Vlies (PE) zugeordnet: Vlies (PE) 4.434.002 XPS-G (glatte Oberfl., Zellgas Luft, d < 70 mm) zugeordnet: Polystyrol XPS, CO2-geschäumt Polymerbitumen-Dichtungsbahn zugeordnet: Polymerbitumen-Dichtungsbahn	0,044 0,500 0,700 0,500 0,500 0,041	15 980 1.800 600 600 38	E1: DE über KG/TG_bp A1: Dach bekiest_bp
1) 1) 1) 2) 2) 2)	CORBLANIT EPS W 20 10 zugeordnet: Polystyrol EPS Trittschalldämmplatte Dampfbremse zugeordnet: Dampfbremse PE Rundriesel 16/32 zugeordnet: Sand, Kies jeweils lufttrocken Filtervlies zugeordnet: Vlies (PE) Vlies (PE) zugeordnet: Vlies (PE) 4.434.002 XPS-G (glatte Oberfl., Zellgas Luft, d < 70 mm) zugeordnet: Polystyrol XPS, CO2-geschäumt Polymerbitumen-Dichtungsbahn zugeordnet: Polymerbitumen-Dichtungsbahn Prottelith Dämmplatte	0,044 0,500 0,700 0,500 0,500 0,041	15 980 1.800 600 600 38	E1: DE über KG/TG_bp A1: Dach bekiest_bp A1: Dach bekiest_bp A1: Dach bekiest_bp A1: Dach bekiest_bp
1) 1) 1) 2) 2) 2)	CORBLANIT EPS W 20 10 zugeordnet: Polystyrol EPS Trittschalldämmplatte Dampfbremse zugeordnet: Dampfbremse PE Rundriesel 16/32 zugeordnet: Sand, Kies jeweils lufttrocken Filtervlies zugeordnet: Vlies (PE) Vlies (PE) zugeordnet: Vlies (PE) 4.434.002 XPS-G (glatte Oberfl., Zellgas Luft, d < 70 mm) zugeordnet: Polystyrol XPS, CO2-geschäumt Polymerbitumen-Dichtungsbahn zugeordnet: Polymerbitumen-Dichtungsbahn Prottelith Dämmplatte zugeordnet: Prottelith Dämmplatte	0,044 0,500 0,700 0,500 0,500 0,041 0,230 0,062	15 980 1.800 600 600 38 1.100	E1: DE über KG/TG_bp A1: Dach bekiest_bp E9a: DE über Fahrr./KIWA_bp
11) 11) 11) 11) 22) 22) 22)	CORBLANIT EPS W 20 10 zugeordnet: Polystyrol EPS Trittschalldämmplatte Dampfbremse zugeordnet: Dampfbremse PE Rundriesel 16/32 zugeordnet: Sand, Kies jeweils lufttrocken Filtervlies zugeordnet: Vlies (PE) Vlies (PE) zugeordnet: Vlies (PE) 4.434.002 XPS-G (glatte Oberfl., Zellgas Luft, d < 70 mm) zugeordnet: Polystyrol XPS, CO2-geschäumt Polymerbitumen-Dichtungsbahn zugeordnet: Polymerbitumen-Dichtungsbahn Prottelith Dämmplatte zugeordnet: Prottelith Dämmplatte Gipskartonplatte	0,044 0,500 0,700 0,500 0,500 0,041	15 980 1.800 600 600 38 1.100	E1: DE über KG/TG_bp A1: Dach bekiest_bp E9a: DE über Fahrr./KIWA_bp F2: AW Wohnung zu Laubengang
1) 1) 1) 1) 2) 2) 2) 2)	CORBLANIT EPS W 20 10 zugeordnet: Polystyrol EPS Trittschalldämmplatte Dampfbremse zugeordnet: Dampfbremse PE Rundriesel 16/32 zugeordnet: Sand, Kies jeweils lufttrocken Filtervlies zugeordnet: Vlies (PE) Vlies (PE) zugeordnet: Vlies (PE) 4.434.002 XPS-G (glatte Oberfl., Zellgas Luft, d < 70 mm) zugeordnet: Polystyrol XPS, CO2-geschäumt Polymerbitumen-Dichtungsbahn zugeordnet: Polymerbitumen-Dichtungsbahn Prottelith Dämmplatte zugeordnet: Prottelith Dämmplatte Gipskartonplatte zugeordnet: Gipskartonplatte	0,044 0,500 0,700 0,500 0,500 0,041 0,230 0,062 0,210	15 980 1.800 600 600 38 1.100 200 850	E1: DE über KG/TG_bp A1: Dach bekiest_bp E9a: DE über Fahrr./KIWA_bp F2: AW Wohnung zu Laubengang F3: AW Wohnung zu Stgh_bp
1) 1) 1) 2) 2) 2) 2)	CORBLANIT EPS W 20 10 zugeordnet: Polystyrol EPS Trittschalldämmplatte Dampfbremse zugeordnet: Dampfbremse PE Rundriesel 16/32 zugeordnet: Sand, Kies jeweils lufttrocken Filtervlies zugeordnet: Vlies (PE) Vlies (PE) zugeordnet: Vlies (PE) 4.434.002 XPS-G (glatte Oberfl., Zellgas Luft, d < 70 mm) zugeordnet: Polystyrol XPS, CO2-geschäumt Polymerbitumen-Dichtungsbahn zugeordnet: Polymerbitumen-Dichtungsbahn Prottelith Dämmplatte zugeordnet: Prottelith Dämmplatte Gipskartonplatte zugeordnet: Gipskartonplatte STO Mineralwolle Dämmplatte WLG 040	0,044 0,500 0,700 0,500 0,500 0,041 0,230 0,062	15 980 1.800 600 600 38 1.100 200 850	E1: DE über KG/TG_bp A1: Dach bekiest_bp E9a: DE über Fahrr./KIWA_bp F2: AW Wohnung zu Laubengang
1) 1) 1) 2) 2) 2) 2) 2) 2)	CORBLANIT EPS W 20 10 zugeordnet: Polystyrol EPS Trittschalldämmplatte Dampfbremse zugeordnet: Dampfbremse PE Rundriesel 16/32 zugeordnet: Sand, Kies jeweils lufttrocken Filtervlies zugeordnet: Vlies (PE) Vlies (PE) zugeordnet: Vlies (PE) 4.434.002 XPS-G (glatte Oberfl., Zellgas Luft, d < 70 mm) zugeordnet: Polystyrol XPS, CO2-geschäumt Polymerbitumen-Dichtungsbahn zugeordnet: Polymerbitumen-Dichtungsbahn Prottelith Dämmplatte zugeordnet: Prottelith Dämmplatte Gipskartonplatte zugeordnet: Gipskartonplatte STO Mineralwolle Dämmplatte WLG 040 zugeordnet: Steinwolle MW-W (25 < roh <= 40 kg/m³)	0,044 0,500 0,700 0,500 0,500 0,041 0,230 0,062 0,210 0,043	15 980 1.800 600 600 38 1.100 200 850	E1: DE über KG/TG_bp A1: Dach bekiest_bp E9a: DE über Fahrr./KIWA_bp F2: AW Wohnung zu Laubengang F3: AW Wohnung zu Laubengang F2: AW Wohnung zu Laubengang
1) 1) 1) 2) 2) 2) 2)	CORBLANIT EPS W 20 10 zugeordnet: Polystyrol EPS Trittschalldämmplatte Dampfbremse zugeordnet: Dampfbremse PE Rundriesel 16/32 zugeordnet: Sand, Kies jeweils lufttrocken Filtervlies zugeordnet: Vlies (PE) Vlies (PE) zugeordnet: Vlies (PE) 4.434.002 XPS-G (glatte Oberfl., Zellgas Luft, d < 70 mm) zugeordnet: Polystyrol XPS, CO2-geschäumt Polymerbitumen-Dichtungsbahn zugeordnet: Polymerbitumen-Dichtungsbahn Prottelith Dämmplatte zugeordnet: Prottelith Dämmplatte Gipskartonplatte zugeordnet: Gipskartonplatte STO Mineralwolle Dämmplatte WLG 040	0,044 0,500 0,700 0,500 0,500 0,041 0,230 0,062 0,210	15 980 1.800 600 600 38 1.100 200 850	E1: DE über KG/TG_bp A1: Dach bekiest_bp E9a: DE über Fahrr./KIWA_bp F2: AW Wohnung zu Laubengang F3: AW Wohnung zu Stgh_bp

Datum: 4. September 2012

Blatt 7

OI3-Index

Projekt: Wr.Neustadt - Werftgasse

	Schichtbezeichnung	Lambda	Dichte	im Bauteil
	OI3-Bezeichnung	[W/mK]	[kg/m³]	
	5.6 Mineralische und pflanzliche Faserdämmstoffe WLFG 040	0,043	70	F3: AW Wohnung zu Stgh_bp
	zugeordnet: Steinwolle MW-WF 60,MW-W (roh > 40kg/m³)			
	Stahlbeton zugeordnet: Stahlbeton	2,500	2.400	F10: IW 2-schalig zu Stgh Stiege 1
	TRENNFUGENPLATTEN TRFP 30 zugeordnet: Steinwolle roh <= 25 kg/m³	0,043	25	F10: IW 2-schalig zu Stgh Stiege 1
	Gipskarton oder Gipsfaser zugeordnet: Gipskartonplatte	0,210	850	IW Gemeinschaftsraum/KIWA Ziegel_bp IW Gemeinschaftsraum/KIWA STB_bp
)	Mineralwolle 15-50 kg/m³	0,043	70	IW Gemeinschaftsraum/KIWA Ziegel_bp
	zugeordnet: Steinwolle MW-WF 60,MW-W (roh > 40kg/m³)			IW Gemeinschaftsraum/KIWA STB_bp
	POROTHERM 20-40 SBZ Plan zugeordnet: Ziegel - Schallschutzziegel 1700 kg/m³	0,550	1.700	IW Gemeinschaftsraum/KIWA Ziegel_bp
)	Zweifach-Wärmeschutzglas low beschichtet 4-10-4 (Ar) (Ug 1,1)(g 0,56) zugeordnet: Zweifach-Wärmeschutzglas low beschichtet (4-10-4 Kr)	0,000	-	F01D: 80/145 F05D: 60/80 VGL 211/220 VGL 314/220
				VGL 180/220 F01B: 80/145 F05B: 60/80 F01C: 80/145 F05C: 60/80 F05C: 60/80
)	Alu Pfosten/Riegel U = 1,8 zugeordnet: Metallrahmen ALU (mit thermischer Trennung)	0,000	-	F01C: 80/145 F01D: 80/145 F05D: 60/80 VGL 211/220 VGL 314/220 VGL 180/220 F01B: 80/145 F05B: 60/80 F01C: 80/145 F05C: 60/80 F05C: 60/80 F01C: 80/145
	Außentür Standard zugeordnet: Innentür gegen Pufferraum (Holz, lackiert)	0,160	700	T01C: 90/210 T01A: 90/210
	- 5 g-g a (T01B: 90/210
	Weichholz (500 kg/m³, Lambda 0,13) 110 mm (Uf 1,3) zugeordnet: Weichholz (500 kg/m³, 110mm Dick) (hist.)	0,013	-	T01C: 90/210 T01A: 90/210
1	Zweifach-Wärmeschutzglas low beschichtet 4-10-4 (Ar) (Ug 1,1)(g 0,62) zugeordnet: Zweifach-Wärmeschutzglas low beschichtet (4-10-4 Kr)	0,000	-	T01B: 90/210 F03A: 170/230 F02A: 90/230 F03B: 170/230 F02C: 90/230 F02B: 90/230 F01A: 80/145
)	PVC-Hohlprofile 5 Kammern (Uf 1,3) zugeordnet: Kunststoff-Hohlprofile (5 Kammern, d > 70mm) (hist.)	0,014	-	F03A: 170/230 F02A: 90/230 F03B: 170/230 F02C: 90/230 F02B: 90/230 F01A: 80/145

¹⁾ Diese Baustoffe stammen aus dem benutzereigenen Baustoffkatalog

²⁾ Diese Baustoffe stammen aus dem ECOTECH-Baustoffkatalog.

Fenster und Türen im Baukörper - kompakt

Projekt: Wr.Neustadt - Werftgasse Datum: 4. September 2012 Blatt 8

					Fenste	r und Tü	ren im E	Baukörp	er - k	ompakt								
Ausricht. / Neig.	Anz	Bezeichnung	Breite [m]	Höhe [m]	Fläche [m²]	Ug [W/m²K]	Uf [W/m²K]	PSI [W/mK]	lg [m]	Uw [W/m²K]	AxU [W/K]	Ag [%]	g [-]	gw [-]	fs [-]	Awirk [m²]	Qs [kWh/a]	Ant.Qs [%]
		NORDOSTEN																
45/90	5	F01D: 80/145	0,80	1,45	5,80	1,10	1,80	0,065	4,10	1,46	8,47	81,47	0,56	0,49	0,90 / 0,90	2,10 / 2,10	1076	1,9
45/90	6	T01C: 90/210	0,90	2,10	11,34	0,00	1,58	0,060	0,00	1,58	17,92	0,00	0,00	0,00	0,90 / 0,90	0,00 / 0,00	0	0,0
45/90	5	F05D: 60/80	0,60	0,80	2,40	1,10	1,80	0,065	2,40	1,61	3,86	72,92	0,56	0,49	0,90 / 0,90	0,78 / 0,78	398	0,7
45/90	5	F01B: 80/145	0,90	1,50	6,75	1,10	1,80	0,065	4,40	1,43	9,65	82,96	0,56	0,49	0,87 / 0,76	2,41 / 2,10	1115	2,0
45/90	5	T01A: 90/210	0,90	2,10	9,45	0,00	1,58	0,060	0,00	1,58	14,93	0,00	0,00	0,00	0,87 / 0,76	0,00 / 0,00	0	0,0
45/90	4	F05B: 60/80	0,60	0,80	1,92	1,10	1,80	0,065	2,40	1,61	3,09	72,92	0,56	0,49	0,87 / 0,76	0,60 / 0,53	279	0,5
45/90	6	F01C: 80/145	0,80	1,45	6,96	1,10	1,80	0,065	4,10	1,46	10,16	81,47	0,56	0,49	0,87 / 0,76	2,44 / 2,13	1129	2,0
45/90	6	T01B: 90/210	0,90	2,10	11,34	0,00	1,58	0,060	0,00	1,58	17,92	0,00	0,00	0,00	0,87 / 0,76	0,00 / 0,00	0	0,0
45/90	6	F05C: 60/80	0,60	0,80	2,88	1,10	1,80	0,065	2,40	1,61	4,64	72,92	0,56	0,49	0,87 / 0,76	0,90 / 0,79	418	0,8
SUM	48	1			58,84						90,64						4.414,06	7,94
		SÜDWESTEN																
225/90	4	F03A: 170/230	1,70	2,30	15,64	1,10	1,30	0,035	11,08	1,26	19,71	71,97	0,62	0,55	0,90 / 0,85	5,54 / 5,23	4310	7,7
225/90	8	F02A: 90/230	0,90	2,30	16,56	1,10	1,30	0,035	5,60	1,25	20,70	71,01	0,62	0,55	0,90 / 0,90	5,79 / 5,79	4673	8,4
225/90	6	F03B: 170/230	1,70	2,30	23,46	1,10	1,30	0,035	11,08	1,26	29,56	71,97	0,62	0,55	0,90 / 0,90	8,31 / 8,31	6710	12,1
225/90	18	F02C: 90/230	0,90	2,30	37,26	1,10	1,30	0,035	5,60	1,25	46,58	71,01	0,62	0,55	0,90 / 0,90	13,02 / 13,02	10515	18,9

Berechnet mit ECOTECH Software, Version 3.1. Ein Produkt der BuildDesk Österreich GmbH; Snr: ECT-20080616XXXH580253

Fenster und Türen im Baukörper - kompakt

Projekt: Wr.Neustadt - Werftgasse Datum: 4. September 2012 Blatt 9

	_	B 11	D "		FI" 1		116	DOL			A 11							1.10
Ausricht. / Neig.	Anz	Bezeichnung	Breite [m]	Höhe [m]	Fläche [m²]	Ug [W/m²K]	Uf [W/m ² K]	PSI [W/mK]	lg [m]	Uw [W/m²K]	AxU [W/K]	Ag [%]	g [-]	gw [-]	fs [-]	Awirk [m²]	Qs [kWh/a]	Ant.Qs [%]
225/90	1	VGL 211/220	2,11	2,20	4,64	1,10	1,80	0,065	12,10	1,38	6,41	83,69	0,56	0,49	0,90 / 0,90	1,73 / 1,73	1394	2,5
225/90	1	VGL 314/220	3,14	2,20	6,91	1,10	1,80	0,065	18,04	1,39	9,60	82,69	0,56	0,49	0,90 / 0,90	2,54 / 2,54	2050	3,7
225/90	10	F02B: 90/230	0,90	2,30	20,70	1,10	1,30	0,035	5,60	1,25	25,88	71,01	0,62	0,55	0,90 / 0,85	7,23 / 6,83	5628	10,1
225/90	2	VGL 180/220	1,80	2,20	7,92	1,10	1,80	0,065	11,48	1,42	11,25	81,67	0,56	0,49	0,90 / 0,90	2,88 / 2,88	2322	4,2
225/90	4	F02A: 90/230	0,90	2,30	8,28	1,10	1,30	0,035	5,60	1,25	10,35	71,01	0,62	0,55	0,90 / 0,85	2,89 / 2,73	2251	4,0
225/90	6	F03B: 170/230	1,70	2,30	23,46	1,10	1,30	0,035	11,08	1,26	29,56	71,97	0,62	0,55	0,90 / 0,85	8,31 / 7,85	6465	11,6
225/90	8	F02C: 90/230	0,90	2,30	16,56	1,10	1,30	0,035	5,60	1,25	20,70	71,01	0,62	0,55	0,90 / 0,85	5,79 / 5,47	4503	8,1
SUM	68				181,39						230,30						50.821,1 1	91,38
		NORDWESTEN																
315/90	2	F01A: 80/145	0,80	1,45	2,32	1,10	1,30	0,035	3,70	1,28	2,97	64,66	0,62	0,55	0,90 / 0,90	0,74 / 0,74	378	0,7
SUM	2				2,32						2,97						378,08	0,68

Legende: Ausricht./Neig. = Ausrichtung / Neigung [°];Breite = Architekturlichte Breite, Höhe = Architekturlichte Höhe, Fläche = Gesamtfläche(außen), Ug = U-Wert des Glases, Uf = U-Wert des Rahmens, PSI = PSI-Wert, Ig = Länge d. Glasrandverbundes (pro Fenster), Uw = gesamter U-Wert des Fensters, AxU = Fläche mal U-Wert, Ag = Anteil Glasfläche, g = Gesamtenergiedurchlaßgrad(g-wert) It. Bauteil, gw = wirksamer Gesamtenergiedurchlaßgrad (g* 0.9 * 0.98), fs = Verschattungsfaktor (Winter/Sommer), aWirk = wirksame Fläche (Glasfläche*gw*fs), Qs = solare Wärmegewinne, Ant. Qs = Anteil an den gesamten solaren Wärmegewinnen, Qt = Transmissionswärmeverluste

Globalstrahlungssummen

Projekt: Wr.Neustadt - Werftgasse Datum: 4. September 2012 Blatt 10

Beiblatt: 1 a

Standardisierte Klimadaten: (Referenzklima)

Monatliche mittlere Außentemperaturen und monatliche mittlere Globalstrahlungssummen in kWh/m².

	°C	Hori-	Süd	Südost	Ost	Nordost	Nord	Nordwes	West	Südwest	Dauer
		zontal						t			[Tage]
Jänner	-1,5	107,24	142,67	115,02	70,24	49,61	47,20	49,61	70,24	115,02	31
Februar	0,7	185,11	216,58	178,16	115,70	81,43	75,89	81,43	115,70	178,16	28
März	4,8	300,24	282,20	247,68	187,63	126,11	102,10	126,11	187,63	247,68	31
April	9,6	406,12	284,26	278,17	243,65	182,74	142,13	182,74	243,65	278,17	30
Mai	14,2	552,10	314,68	329,87	317,45	252,58	198,76	252,58	317,45	329,87	31
Juni	17,3	558,79	279,40	310,14	318,53	266,83	212,36	266,83	318,53	310,14	30
Juli	19,1	578,09	294,84	330,95	335,30	273,13	213,88	273,13	335,30	330,95	31
August	18,6	498,60	314,10	322,85	294,16	215,64	159,55	215,64	294,16	322,85	31
September	15,0	356,29	295,70	269,89	217,33	155,88	128,27	155,88	217,33	269,89	30
Oktober	9,6	231,66	252,50	212,54	147,10	96,73	85,72	96,73	147,10	212,54	31
November	4,2	113,26	150,66	120,06	72,50	50,11	47,56	50,11	72,50	120,06	30
Dezember	0,2	80,39	123,80	96,88	52,67	35,78	34,56	35,78	52,67	96,88	31

Standortbezogene Klimadaten: (Wiener Neustadt)

Monatliche mittlere Außentemperaturen und monatliche mittlere Globalstrahlungssummen in kWh/m².

	°C	Hori-	Süd	Südost	Ost	Nordost	Nord	Nordwes	West	Südwest	Dauer
		zontal						t			[Tage]
Jänner	-1,5	108,28	144,01	115,86	71,46	49,81	47,64	49,81	71,46	115,86	31
Februar	0,6	187,64	219,54	180,14	118,22	82,56	76,93	82,56	118,22	180,14	28
März	4,6	304,62	286,34	252,83	191,91	127,94	103,57	127,94	191,91	252,83	31
April	9,4	426,30	298,41	294,15	255,78	191,84	149,21	191,84	255,78	294,15	30
Mai	13,9	568,88	324,26	341,33	329,95	261,68	204,80	261,68	329,95	341,33	31
Juni	17,1	578,65	289,32	324,04	329,83	277,75	219,89	277,75	329,83	324,04	30
Juli	18,9	593,29	302,58	338,18	344,11	278,85	219,52	278,85	344,11	338,18	31
August	18,4	512,81	323,07	333,33	302,56	220,51	164,10	220,51	302,56	333,33	31
September	14,9	368,84	306,14	280,32	224,99	162,29	132,78	162,29	224,99	280,32	30
Oktober	9,6	242,30	264,10	222,91	155,07	101,76	89,65	101,76	155,07	222,91	31
November	4,1	119,83	159,37	127,02	76,69	52,73	50,33	52,73	76,69	127,02	30
Dezember	0,3	79,97	123,15	96,76	52,78	35,98	34,39	35,98	52,78	96,76	31

Wärmebedarf Standort

Projekt: Wr.Neustadt - Werftgasse Datum: 4. September 2012 Blatt 11

Monatliche Berechnung des Wärmebedarfs:

Standort	Wiener Neustadt	
Klimaregion	N/SO	
Seehöhe	265	m
LT	865,53	W/K
LV	203,70	W/K
Innentemperatu	r 20	°C
t_Heiz,d	24	h/d
q_ihn	3,75	W/m²
BGF	1.694,32	m²
С	161 355 60	Wh/K

Monate	Trans verluste [kWh/a]	Lüft verluste [kWh/a]	Wärme- verluste [kWh/a]	Innere Gewinne [kWh/a]	Solare Gewinne [kWh/a]	Gesamt- gewinne [kWh/a]	Gewinn/ verlust Verhältn.	Nutz grad	Bedarf [kWh/a]
Jan	13.841	3.257	17.099	3.782	2.198	5.980	0,35	1,00	11.118,5
Feb	11.313	2.662	13.975	3.416	3.432	6.848	0,49	1,00	7.129,0
Mar	9.935	2.338	12.273	3.782	4.851	8.632	0,70	0,99	3.706,7
Apr	6.630	1.560	8.190	3.660	5.585	9.244	1,13	0,85	352,3
Mai	3.924	924	4.848	3.782	6.580	10.361	2,14	0,47	0,9
Jun	1.835	432	2.267	3.660	6.321	9.981	4,40	0,23	0,0
Jul	686	162	848	3.782	6.569	10.350	12,21	0,08	0,0
Aug	1.022	241	1.263	3.782	6.336	10.118	8,01	0,12	0,0
Sep	3.164	745	3.909	3.660	5.270	8.929	2,28	0,44	0,4
Okt	6.702	1.577	8.279	3.782	4.246	8.028	0,97	0,93	846,2
Nov	9.904	2.331	12.234	3.660	2.405	6.065	0,50	1,00	6.171,6
Dez	12.695	2.988	15.682	3.782	1.820	5.602	0,36	1,00	10.080,4
Summe	81.651	19.216	100.867	44.527	55.613	100.140	0,99	0,61	39.406

Monate	0e	T	а
	[°C]	[h]	[-]
Jan	-1,49	150,91	10,43
Feb	0,55	150,91	10,43
Mar	4,57	150,91	10,43
Apr	9,36	150,91	10,43
Mai	13,91	150,91	10,43
Jun	17,06	150,91	10,43
Jul	18,93	150,91	10,43
Aug	18,41	150,91	10,43
Sep	14,92	150,91	10,43
Okt	9,59	150,91	10,43
Nov	4,11	150,91	10,43
Dez	0,29	150,91	10,43

Der flächenbezogene Heizwärmebedarf beträgt:

23,26 [kWh/(m²a)]

Wärmebedarf Referenzstandort

Projekt: Wr.Neustadt - Werftgasse Datum: 4. September 2012 Blatt 12

Monatliche Berechnung des Wärmebedarfs:

Standort	Referenzklima	
Klimaregion	N/SO	
Seehöhe	0	m
LT	865,53	W/K
LV	203,70	W/K
Innentemperatur	20	°C
t_Heiz,d	24	h/d
q_ihn	3,75	W/m²
BGF	1.694,32	m²
C	161.355,60	Wh/K

Monate	Trans verluste [kWh/a]	Lüft verluste [kWh/a]	Wärme- verluste [kWh/a]	Innere Gewinne [kWh/a]	Solare Gewinne [kWh/a]	Gesamt- gewinne [kWh/a]	Gewinn/ verlust Verhältn.	Nutz grad	Bedarf [kWh/a]
Jan	13.864	3.263	17.127	3.782	2.183	5.965	0,35	1,00	11.162,6
Feb	11.208	2.638	13.846	3.416	3.394	6.810	0,49	1,00	7.038,2
Mar	9.782	2.302	12.084	3.782	4.754	8.536	0,71	0,99	3.615,9
Apr	6.469	1.522	7.991	3.660	5.285	8.944	1,12	0,85	362,9
Mai	3.735	879	4.614	3.782	6.358	10.140	2,20	0,45	0,7
Jun	1.664	392	2.055	3.660	6.052	9.712	4,73	0,21	0,0
Jul	567	133	700	3.782	6.429	10.211	14,59	0,07	0,0
Aug	927	218	1.146	3.782	6.142	9.924	8,66	0,12	0,0
Sep	3.097	729	3.826	3.660	5.073	8.733	2,28	0,44	0,4
Okt	6.671	1.570	8.241	3.782	4.048	7.830	0,95	0,93	928,7
Nov	9.871	2.323	12.194	3.660	2.274	5.934	0,49	1,00	6.262,3
Dez	12.757	3.002	15.759	3.782	1.822	5.604	0,36	1,00	10.155,3
Summe	80.612	18.972	99.584	44.527	53.814	98.341	0,99	0,61	39.527

Monate	0e	T	а
	[°C]	[h]	[-]
Jan	-1,53	150,91	10,43
Feb	0,73	150,91	10,43
Mar	4,81	150,91	10,43
Apr	9,62	150,91	10,43
Mai	14,20	150,91	10,43
Jun	17,33	150,91	10,43
Jul	19,12	150,91	10,43
Aug	18,56	150,91	10,43
Sep	15,03	150,91	10,43
Okt	9,64	150,91	10,43
Nov	4,16	150,91	10,43
Dez	0,19	150,91	10,43

Der flächenbezogene Heizwärmebedarf beträgt:

23,33 [kWh/(m²a)]

Solare Aufnahmeflächen

Projekt: Wr.Neustadt - Werftgasse Datum: 4. September 2012 Blatt 13

Solare Aufnahmeflächen

vie Verschattung wurde detailliert nach den Angaben im Baukörper berechnet(Werte für Winter / Sommer, bzw. ein Wert bei direkter Eingabe des Verschattungsfaktors)

Wand	Fenster	Richtung ſ°1	Neigung r°1	Fläche [m²]	gw [-]	Glasanteil [%]	F_s [-]	A_trans [m²]	Qs [kWh]
AW NO	F01D: 80/145	45,00	90,00	5,80	0,49	81,47	0,90 / 0,90	2,10 / 2,10	1.075,70
AW NO	T01C: 90/210	45,00	90,00	11,34	0,00	0,00	0,90 / 0,90	0,00 / 0,00	0,00
AW NO	F05D: 60/80	45,00	90,00	2,40	0,49	72,92	0,90 / 0,90	0,78 / 0,78	398,41
AW SW	F03A: 170/230	225,00	90,00	15,64	0,55	71,97	0,90 / 0,85	5,54 / 5,23	4.309,70
AW SW	F02A: 90/230	225,00	90,00	16,56	0,55	71,01	0,90 / 0,90	5,79 / 5,79	4.673,39
AW SW	F03B: 170/230	225,00	90,00	23,46	0,55	71,97	0,90 / 0,90	8,31 / 8,31	6.709,65
AW SW	F02C: 90/230	225,00	90,00	37,26	0,55	71,01	0,90 / 0,90	13,02 / 13,02	10.515,12
AW SW	VGL 211/220	225,00	90,00	4,64	0,49	83,69	0,90 / 0,90	1,73 / 1,73	1.394,48
AW SW	VGL 314/220	225,00	90,00	6,91	0,49	82,69	0,90 / 0,90	2,54 / 2,54	2.050,26
AW SW	F02B: 90/230	225,00	90,00	20,70	0,55	71,01	0,90 / 0,85	7,23 / 6,83	5.628,34
AW SW	VGL 180/220	225,00	90,00	7,92	0,49	81,67	0,90 / 0,90	2,88 / 2,88	2.321,62
AW SW	F02A: 90/230	225,00	90,00	8,28	0,55	71,01	0,90 / 0,85	2,89 / 2,73	2.251,34
AW SW	F03B: 170/230	225,00	90,00	23,46	0,55	71,97	0,90 / 0,85	8,31 / 7,85	6.464,55
AW SW	F02C: 90/230	225,00	90,00	16,56	0,55	71,01	0,90 / 0,85	5,79 / 5,47	4.502,67
AW NW	F01A: 80/145	315,00	90,00	2,32	0,55	64,66	0,90 / 0,90	0,74 / 0,74	378,08
AW NO Laubengang	F01B: 80/145	45,00	90,00	6,75	0,49	82,96	0,87 / 0,76	2,41 / 2,10	1.114,68
AW NO Laubengang	T01A: 90/210	45,00	90,00	9,45	0,00	0,00	0,87 / 0,76	0,00 / 0,00	0,00
AW NO Laubengang	F05B: 60/80	45,00	90,00	1,92	0,49	72,92	0,87 / 0,76	0,60 / 0,53	278,67
AW NO Laubengang	F01C: 80/145	45,00	90,00	6,96	0,49	81,47	0,87 / 0,76	2,44 / 2,13	1.128,61
AW NO Laubengang	T01B: 90/210	45,00	90,00	11,34	0,00	0,00	0,87 / 0,76	0,00 / 0,00	0,00
AW NO Laubengang	F05C: 60/80	45,00	90,00	2,88	0,49	72,92	0,87 / 0,76	0,90 / 0,79	418,00

Verschattungseinstellungen und Teilbestrahlungsfaktoren laut Baukörper:

Solare Aufnahmeflächen

Projekt: Wr.Neustadt - Werftgasse Datum: 4. September 2012 Blatt 14

Wand	Fenster	Horizont-	Überhang-	Seitl.	Fh	Fo	Ff	direkte	Fs
		Verschattung [°]	Verschattung [°]	Überstands- Verschattung [°]	[-]	[-]	[-]	Eingabe [-]	[-]
AW NO	F01D: 80/145	-	0	0	0,90 / 0,90	1,00 / 1,00	1,00 / 1,00	-	0,90 / 0,90 °
AW NO	T01C: 90/210	-	0	0	0,90 / 0,90	1,00 / 1,00	1,00 / 1,00	-	0,90 / 0,90 °
AW NO	F05D: 60/80	-	0	0	0,90 / 0,90	1,00 / 1,00	1,00 / 1,00	-	0,90 / 0,90 °
AW SW	F03A: 170/230	-	45	0	0,90 / 0,90	0,93 / 0,85	1,00 / 1,00	-	0,90 / 0,85
AW SW	F02A: 90/230	-	0	0	0,90 / 0,90	1,00 / 1,00	1,00 / 1,00	-	0,90 / 0,90 °
AW SW	F03B: 170/230	-	0	0	0,90 / 0,90	1,00 / 1,00	1,00 / 1,00	-	0,90 / 0,90 °
AW SW	F02C: 90/230	-	0	0	0,90 / 0,90	1,00 / 1,00	1,00 / 1,00	-	0,90 / 0,90 °
AW SW	VGL 211/220	-	0	0	0,90 / 0,90	1,00 / 1,00	1,00 / 1,00	-	0,90 / 0,90 °
AW SW	VGL 314/220	-	0	0	0,90 / 0,90	1,00 / 1,00	1,00 / 1,00	-	0,90 / 0,90 °
AW SW	F02B: 90/230	-	45	0	0,90 / 0,90	0,93 / 0,85	1,00 / 1,00	-	0,90 / 0,85
AW SW	VGL 180/220	-	0	0	0,90 / 0,90	1,00 / 1,00	1,00 / 1,00	-	0,90 / 0,90 °
AW SW	F02A: 90/230	-	45	0	0,90 / 0,90	0,93 / 0,85	1,00 / 1,00	-	0,90 / 0,85
AW SW	F03B: 170/230	-	45	0	0,90 / 0,90	0,93 / 0,85	1,00 / 1,00	-	0,90 / 0,85
AW SW	F02C: 90/230	-	45	0	0,90 / 0,90	0,93 / 0,85	1,00 / 1,00	-	0,90 / 0,85
AW NW	F01A: 80/145	-	0	0	0,90 / 0,90	1,00 / 1,00	1,00 / 1,00	-	0,90 / 0,90 °
AW NO Laubengang	F01B: 80/145	-	60	0	0,90 / 0,90	0,87 / 0,76	1,00 / 1,00	-	0,87 / 0,76
AW NO Laubengang	T01A: 90/210	-	60	0	0,90 / 0,90	0,87 / 0,76	1,00 / 1,00	-	0,87 / 0,76
AW NO Laubengang	F05B: 60/80	-	60	0	0,90 / 0,90	0,87 / 0,76	1,00 / 1,00	-	0,87 / 0,76
AW NO Laubengang	F01C: 80/145	-	60	0	0,90 / 0,90	0,87 / 0,76	1,00 / 1,00	-	0,87 / 0,76
AW NO Laubengang	T01B: 90/210	-	60	0	0,90 / 0,90	0,87 / 0,76	1,00 / 1,00	-	0,87 / 0,76
AW NO Laubengang	F05C: 60/80	-	60	0	0,90 / 0,90	0,87 / 0,76	1,00 / 1,00	-	0,87 / 0,76

^{*} Nachweis für geringere Verschattung
° aus den Verschattungseinstellungen der Wand (Verschattungsfaktor-Gesamt)

Transmissionsverluste

Projekt: Wr.Neustadt - Werftgasse Datum: 4. September 2012 Blatt 15

Le Verluste zu Außenluft

Bezeichnung	A	U	f_ih	F_FH	A*U*f_ih*F_FH
2020.0	[m²]	[W/m²K]	[-]	[-]	[W/K]
AW NO	178,03	0,20	1,000	1,000	35,61
F01D: 80/145	5,80	1,46	1,000	1,000	8,47
T01C: 90/210	11,34	1,58	1,000	1,000	17,92
F05D: 60/80	2,40	1,61	1,000	1,000	3,86
AW SW	440,13	0,20	1,000	1,000	88,03
F03A: 170/230	15,64	1,26	1,000	1,000	19,71
F02A: 90/230	16,56	1,25	1,000	1,000	20,70
F03B: 170/230	23,46	1,26	1,000	1,000	29,56
F02C: 90/230	37,26	1,25	1,000	1,000	46,58
VGL 211/220	4,64	1,38	1,000	1,000	6,41
VGL 314/220	6,91	1,39	1,000	1,000	9,60
F02B: 90/230	20,70	1,25	1,000	1,000	25,88
VGL 180/220	7,92	1,42	1,000	1,000	11,25
F02A: 90/230	8,28	1,25	1,000	1,000	10,35
F03B: 170/230	23,46	1,26	1,000	1,000	29,56
F02C: 90/230	16,56	1,25	1,000	1,000	20,70
AW NW	55,61	0,20	1,000	1,000	11,12
F01A: 80/145	2,32	1,28	1,000	1,000	2,97
AW SO	33,71	0,20	1,000	1,000	6,74
AW NO Laubengang	357,72	0,21	1,000	1,000	75,12
F01B: 80/145	6,75	1,43	1,000	1,000	9,65
T01A: 90/210	9,45	1,58	1,000	1,000	14,93
F05B: 60/80	1,92	1,61	1,000	1,000	3,09
F01C: 80/145	6,96	1,46	1,000	1,000	10,16
T01B: 90/210	11,34	1,58	1,000	1,000	17,92
F05C: 60/80	2,88	1,61	1,000	1,000	4,64
DE über PKW-Stellplätze linker Teil	77,35	0,17	1,000	1,000	13,15
Flachdach	605,50	0,16	1,000	1,000	96,88
Summe	1.990,60				650,54

Lu Verluste zu unkonditioniertem außenluftexponierten Stiegenhaus

Bezeichnung	A	U	f_ih	F_FH	A*U*f_ih*F_FH
	[m²]	[W/m ² K]	[-]	[-]	[W/K]
IW zu Stgh	168,09	0,30	0,700	1,000	35,30
F05C: 60/80	0,48	1,61	0,700	1,000	0,54
F01C: 80/145	1,16	1,46	0,700	1,000	1,19
IW 2-schalig zu Stgh	48,58	0,58	0,700	1,000	19,72
Summe	218,31				56,75

Lu Verluste zu sonstigem Pufferraum

Bezeichnung	Α	U	f_ih	F_FH	A*U*f_ih*F_FH
	[m²]	[W/m ² K]	[-]	[-]	[W/K]
IW Gemeinschaftsraum/KIWA Ziegel	12,38	0,38	0,700	1,000	3,29
IW Gemeinschaftsraum/KIWA STB	15,70	0,41	0,700	1,000	4,51
DE 1.OG über KIWA	44,83	0,19	0,700	1,000	5,96
Summe	72,91				13,76

Transmissionsverluste

Projekt: Wr.Neustadt - Werftgasse Datum: 4. September 2012 Blatt 16

Lg Verluste zu Erdreich oder z	u unkonditioniertem Keller
--------------------------------	----------------------------

Bezeichnung	Α	U	f_ih	F_FH	A*U*f_ih*F_FH
	[m²]	[W/m ² K]	[-]	[-]	[W/K]
DE über KG rechter Teil	483,32	0,21	0,700	1,000	71,05
Summe	483,32				71,05

Leitwerte								
Hüllfläche AB	2.765,14	m²						
Leitwert für Bauteile, die an Außenluft grenzenLe	650,54	W/K						
Leitwert für Bauteile, die an unbeheizte Řäume grenzen Lu	70,51	W/K						
Leitwert für bodenberührte Bauteile und Bauteile, die an unkonditionierte Keller grenzen Lg	71,05	W/K						
Leitwert der Gebäudehülle L⊤	865,53	W/K						
Leitwertzuschlag für Wärmebrücken (vereinfacht)	73,43	W/K						
Leitwertzuschlag für Wärmebrücken (detailliert It. Baukörper) (informativ)	0,00	W/K						
Lüftungsleitwert L v	203.70	W/K						

Heizlast		
Innentemperatur T _i	20,0	°C
Normaußentemperatur T _{Ne}	-13,1	°C
Temperaturdifferenz delta T	33,1	°C
Heizlast Ptot	35.391	W
Flächenbez. Heizlast P ₁	20,9	W/m²

Lüftungsverluste

Projekt: Wr.Neustadt - Werftgasse Datum: 4. September 2012 Blatt 17

Beiblatt: 2 c

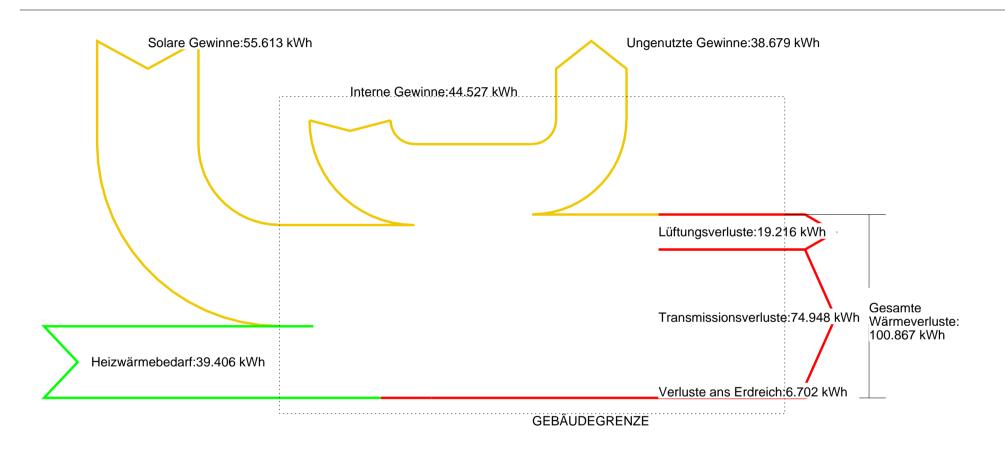
Lüftungsverluste Wohngebäude - mechanische Lüftung

Brutto-Grundfläche BGF [m²]	1694,32
Energetisch wirksames Luftvolumen V, [m³]	3524,19
Falschluftrate (Infiltrationsrate) n _v [1/h]	0,07
Wärmebereitstellungsgrad des Lüftungsgerätes mit Wärmerückgewinnung nweg [-]	0,75
Wärmebereitstellungsgrad des Gesamtsystems ท _{Vges} [-]	0,75
Luftvolumenstrom $v_{V}[m^3/h]$	599,11
Wärmekapazität der Luft $\rho_L \cdot c_{p,L}$ [Wh/(m ³ ·K)]	0,34
Lüftungsleitwert L _V [W/K]	203,70

Der Lüftungs-Leitwert $L_{\!\scriptscriptstyle V}$ wird gemäß ÖNORM B 8110-6:2007 wie folgt ermittelt:

$$L_{\text{\tiny V}} = c_{\text{\tiny p,L}} \boldsymbol{\cdot} \; \rho_{\text{\tiny L}} \; \boldsymbol{\cdot} \; v_{\text{\tiny V}} \; \; \text{in W/K}$$

Der Luftvolumenstrom v_v ist mit $v_v = [0.4 \cdot (1 - \eta_{vges}) + n_x] \cdot V_v = 599,11 \text{ m}^3/\text{h}$ anzusetzen.



Energiebilanz:

Projekt: Wr.Neustadt - Werftgasse

Blatt:: Energiebilanz

Datum: 4. September 2012 Blatt 18

Energiebilanz:

Projekt: Wr.Neustadt - Werftgasse Datum: 4. September 2012 Blatt 19

Blatt:: Energiebilanz

Bauherr: FRIEDEN gemeinn. Bau- u. Siedlungsgen.m.b.H.

Bezeichnung: Wr.Neustadt - Werftgasse

Adresse: Werftgasse

Standort: 2700 Wiener Neustadt

Höhe: 265 Norm-Außentemperatur: -13,1

Windlage des Gebäudes: x windschwache o windstarke Gegend

o normale x freie Lage

Windgeschwindigkeit: 4

Grundrißtyp: Mehrfamilienhaus Erfassung basiert auf: Bestandsplan

Berechneter Baukörper: Stiege 5 Stiege 5_BP V3 08/12

Verwendete Bauteile in Stiege 5_BP V3 08/12:

Bezeichnung	Fläche/Stück	U-Wert
F1: AW Wohnung_PP	707,48 m ²	0,20 W/m ² K
E9: DE über Stellplätze	77,35 m ²	
EG_bp		
E1: DE über KG/TG_bp	483,32 m ²	0,21 W/m ² K
E3: DE	1.088,82 m ²	0,50 W/m ² K
Regelgeschoss_bp		
A1: Dach bekiest_bp	605,50 m ²	0,16 W/m ² K
E9a: DE über	44,83 m ²	0,19 W/m ² K
Fahrr./KIWA_bp		
F2: AW Wohnung zu	357,72 m ²	0,21 W/m ² K
Laubengang		
F3: AW Wohnung zu	168,09 m ²	0,30 W/m ² K
Stgh_bp		
F10: IW 2-schalig zu Stgh	48,58 m ²	0,58 W/m ² K
Stiege 1		
IW -	12,38 m ²	0,38 W/m ² K
Gemeinschaftsraum/KIWA		
Ziegel_bp		
IW	15,70 m ²	0,41 W/m ² K
Gemeinschaftsraum/KIWA		
STB_bp		
F01D: 80/145	5 Stk	1,46 W/m ² K
T01C: 90/210	6 Stk	1,58 W/m ² K
F05D: 60/80	5 Stk	1,61 W/m ² K
F03A: 170/230	4 Stk	1,26 W/m ² K
F02A: 90/230	12 Stk	1,25 W/m ² K
F03B: 170/230	12 Stk	1,26 W/m ² K

Projekt: Wr.Neustadt - Werftgasse Datum: 4. September 2012 Blatt 20

F02C: 90/230	26 Stk	1,25 W/m ² K
VGL 211/220	1 Stk	1,38 W/m ² K
VGL 314/220	1 Stk	1,39 W/m ² K
F02B: 90/230	10 Stk	1,25 W/m ² K
VGL 180/220	2 Stk	1,42 W/m ² K
F01A: 80/145	2 Stk	1,28 W/m ² K
F01B: 80/145	5 Stk	1,43 W/m ² K
T01A: 90/210	5 Stk	1,58 W/m ² K
F05B: 60/80	4 Stk	1,61 W/m ² K
F01C: 80/145	6 Stk	1,46 W/m ² K
T01B: 90/210	6 Stk	1,58 W/m ² K
F05C: 60/80	6 Stk	1,61 W/m ² K
F05C: 60/80	1 Stk	1,61 W/m ² K
F01C: 80/145	1 Stk	1,46 W/m ² K

Berechnet mit ECOTECH Software, Version 3.1. Ein Produkt der BuildDesk Österreich GmbH; Snr: ECT-20080616XXXH580253

Bauteil - Dokumentation Wärmeübertragung durch Bauteile (U-Wert) nach EN ISO 6946

Projekt: Wr.Neustadt - Werftgasse Datum: 4. September 2012 Blatt 21

Bauteil: F1: AW Wohnung_PP

verwendung: A	Konstruktion	l	J OI	3 Nr	Bezeichnung	Dicke	Lambda	R-Wert
Außen	(Skizze)	Innen			S .	[m]	[W/mK]	[m ² *K/W]
					Wärmeübergangswiderstand Aussen Rs,e	-	-	0,040
		5	3 2	1	Baumit EdelPutz 2mm	0,002	0,800	0,003
		<u> </u>			CORBLANIT EPS F 16	0,160	0,040	4,000
n A ni All	XIII	5			POROTHERM 25-38 Objekt Plan	0,250	0,324	0,772
	→ 1 4000	5	4 2	4	Gipsputz, Kalkgipsputz	0,015	0,700	0,021
101010	1633			-	Wärmeübergangswiderstand Innen Rs,i	-	-	0,130
15714	開御							
And the second	A 10							
Terro Pa	→ T 4 1330							
NEWE •	- MM							
0.0 01011	→ [4 Hill							
	117							
	11/							
0,427	m →							
`	1				6 = R _{si} + Summe R-Wert der Schichten + R _{se}	0,427		4,966 *)
		U-	Wert [V	//m²K]				0,20

[☑] wird in der U-Wert Berechnung / OI3 Berechnung berücksichtigt

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: April 2007 ist erfüllt.

Geforderter U-Wert		Berechneter U-Wert	
0,35	W/m²K	0,20	W/m²K

Bauteil: F2: AW Wohnung zu Laubengang

Verwendung: Au									
	Konstruktion		U	OI3	Nr	Bezeichnung	Dicke	Lambda	R-Wert
Außen	(Skizze)	Innen					[m]	[W/mK]	[m ² *K/W]
					-	Wärmeübergangswiderstand Aussen Rs,e	-	-	0,040
			\mathbf{Y}	\mathbf{Z}	1	Gipskartonplatte imprägniert 2)	0,015	0,210	0,071
			7	\mathbf{Y}	2	STO Mineralwolle Dämmplatte WLG 040	0,160	0,040	4,000
$[\Lambda \Lambda \Lambda \Lambda]_{-}$	<u> </u>		K	K	3	POROTHERM 25 SSZ HD	0,250	0,556	0,450
MAMA			\mathbf{Y}	\mathbf{Z}	4	Gipsputz, Kalkgipsputz	0,015	0,700	0,021
					-	Wärmeübergangswiderstand Innen Rs,i	-	-	0,130
	100								
	100								
	MIN NO.								
	→ 「 W W W W W W W W W W W W W W W W W W								
	189								
	◆ [4								
WVVVV -									
0,440 n	n								
		*)) R⊤lt	EN IS	SO 6946	= Rsi + Summe R-Wert der Schichten + Rse	0,440		4,712 *)
'	1	Τΰ		t [W/m					0,21

wird in der U-Wert Berechnung / Ol3 Berechnung berücksichtigt 2) Für diese Baustoffe wurden die ECOTECH-Baustoffdaten vom Benutzer individuell abgeändert!

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OlB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: April 2007 ist erfüllt.

<u>Geforderter U-Wert</u>		Berechneter U-Wert	
0,35	W/m²K	0,21	W/m²K

Bauteil - Dokumentation Wärmeübertragung durch Bauteile (U-Wert) nach EN ISO 6946

Projekt: Wr.Neustadt - Werftgasse Datum: 4. September 2012 Blatt 22

Bauteil: F10: IW 2-schalig zu Stgh Stiege 1

Verwendung: In	nenwand							
	Konstruktion	U	OI3	Nr	Bezeichnung	Dicke	Lambda	R-Wert
Außen	(Skizze) Ir	nnen				[m]	[W/mK]	[m ² *K/W]
				-	Wärmeübergangswiderstand Aussen Rs,e	-	-	0,130
		₩.	Y	1	Stahlbeton	0,200	2,300	0,087
Annual Control		₹	4	2	TRENNFUGENPLATTEN TRFP 30	0,030	0,033	0,909
	The state of the s	₹	Y	3	POROTHERM 25 SSZ HD	0,250	0,556	0,450
1 1 1 1 1	· 1 4 100	₹	Y	4	Gipsputz, Kalkgipsputz	0,015	0,700	0,021
				-	Wärmeübergangswiderstand Innen Rs,i	-	-	0,130
1								
1111								
	- WW							
1111/								
1 1 1 1 X E	◆ * * * * * * * * * * * * * * * * * * *							
0,49	5 m 🔍							
		*) F	t It. EN	ISO 694	6 = R _{si} + Summe R-Wert der Schichten + R _{se}	0,495		1,727 *)
1	ı		Vert [W/					0,58

[☑] wird in der U-Wert Berechnung / OI3 Berechnung berücksichtigt

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: April 2007 ist erfüllt.

Geforderter U-Wert		Berechneter U-Wert	
0,60	W/m²K	0,58	W/m²K

Bauteil: F3: AW Wohnung zu Stgh_bp

erwendung: Ini			- 11	Ol3	Nr	Densishavan	Dicke	مام طمع ما	R-Wert
	Konstruktion		U	Ol3	INI	Bezeichnung	1 1	Lambda	
Außen	(Skizze)	Innen					[m]	[W/mK]	[m ² *K/W]
					-	Wärmeübergangswiderstand Aussen Rs,e	-	-	0,130
			✓	₩.	1	Gipskartonplatte imprägniert 2)	0,015	0,210	0,071
			¥	Ø	2	5.6 Mineralische und pflanzliche Faserdämmstoffe WLFG 040	0,100	0,040	2,500
	- T - 4 - HY(I)		4	V	3	POROTHERM 25 SSZ HD	0,250	0,556	0,450
	期間		4	Ā	4	Gipsputz, Kalkgipsputz	0,010	0,700	0,014
					-	Wärmeübergangswiderstand Innen Rs,i	-	-	0,130
	10/0								
√ 0,375 m									
0,070 111			*) R _T	lt. EN I	SO 6946	S = R _{si} + Summe R-Wert der Schichten + R _{se}	0,375		3,295 *)
I	I			rt [W/m					0,30

wird in der U-Wert Berechnung / Ol3 Berechnung berücksichtigt 2) Für diese Baustoffe wurden die ECOTECH-Baustoffdaten vom Benutzer individuell abgeändert!

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: April 2007 ist erfüllt.

Geforderter U-Wert		Berechneter U-Wert	
0,60	W/m²K	0,30	W/m²K

Bauteil - Dokumentation Wärmeübertragung durch Bauteile (U-Wert) nach EN ISO 6946

Projekt: Wr.Neustadt - Werftgasse Datum: 4. September 2012 Blatt 23

Bauteil: IW Gemeinschaftsraum/KIWA STB_bp

Verwendung: Innenv	wand								
	Konstruktion		U	OI3	Nr	Bezeichnung	Dicke	Lambda	R-Wert
Außen	(Skizze)	Innen					[m]	[W/mK]	[m ² *K/W]
					-	Wärmeübergangswiderstand Aussen Rs,e	-	-	0,130
			₩.	V	1	Gipskarton oder Gipsfaser	0,015	0,210	0,071
All the state of			\mathbf{r}		2	Mineralwolle 15-50 kg/m ³	0,080	0,040	2,000
NAME OF THE PERSON OF THE PERS		[₩.	Y	3	Stahlbeton	0,200	2,500	0,080
			₩.	V	4	Gipsputz, Kalkgipsputz	0,015	0,700	0,021
	11.1				-	Wärmeübergangswiderstand Innen Rs,i	-	-	0,130
	di la companya da la								
L. Walshield		[
J. J. Lab. Address.									
1, 124034	W.								
	## T	[
11、130年出版的	14								
	3 7								
A14 20 X X X X X X X X X X X X X X X X X X		Ī							
/ 0,310 m									
		Ī	*) R _T	lt. EN I	SO 6946	= R _{si} + Summe R-Wert der Schichten + R _{se}	0,310		2,433 *)
			U-We	rt [W/m	n²K]				0,41

[☑] wird in der U-Wert Berechnung / OI3 Berechnung berücksichtigt

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: April 2007 ist erfüllt.

Geforderter U-Wert		Berechneter U-Wert
0,60	W/m²K	0,41 W/m²K

Bauteil: IW Gemeinschaftsraum/KIWA Ziegel_bp

	Konstruktion		U	OI3	Nr	Bezeichnung	Dicke	Lambda	R-Wert
Außen	(Skizze)	Innen				-	[m]	[W/mK]	[m ² *K/W]
					-	Wärmeübergangswiderstand Aussen Rs,e		-	0,130
			\mathbf{Y}	Ŋ	1	Gipskarton oder Gipsfaser	0,015	0,210	0,071
111			4	7	2	Mineralwolle 15-50 kg/m ³	0,080	0,040	2,000
	- 1 11/11		V	Ŋ	3	POROTHERM 20-40 SBZ Plan	0,200	0,659	0,303
90.00 April	L 1676		4	Y	4	Gipsputz, Kalkgipsputz	0,015	0,700	0,021
())(()					-	Wärmeübergangswiderstand Innen Rs,i		-	0,130
3 E									
la Lack	□ 諸智所								
	- W/W								
1.0	1,000								
1 1 1									
	= W/04								
/ 0,310 m									
			*) RT	t. EN I	SO 6946	S = R _{si} + Summe R-Wert der Schichten + R _{se}	0,310		2,656 *
	,		U-We	rt [W/m	12K]				0,38

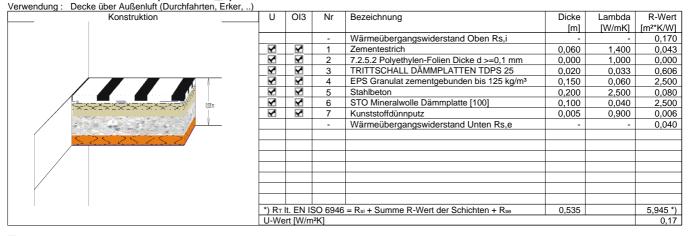
 $[{]f M}$ wird in der U-Wert Berechnung / OI3 Berechnung berücksichtigt

Geforderter U-Wert		Berechneter U-Wert	
0,60	W/m²K	0,38	W/m²K

Bauteil - Dokumentation Wärmeübertragung durch Bauteile (U-Wert) nach EN ISO 6946

Projekt: Wr.Neustadt - Werftgasse Datum: 4. September 2012 Blatt 24

Bauteil: E3: DE Regelgeschoss_bp


Verwendung: Tren	паеске							
	Konstruktion	U	OI3	Nr	Bezeichnung	Dicke	Lambda	R-Wert
						[m]	[W/mK]	[m ² *K/W]
				-	Wärmeübergangswiderstand Oben Rs,e	-	-	0,130
		\mathbf{x}	\mathbf{Y}	1	Zementestrich	0,060	1,400	0,043
		₩.	\mathbf{Z}	2	7.2.5.2 Polyethylen-Folien Dicke d >=0,1 mm	0,000	1,000	0,000
		\mathbf{x}	\mathbf{Y}	3	TRITTSCHALL DÄMMPLATTEN TDPS 25	0,020	0,033	0,606
/		\mathbf{Z}	\mathbf{Z}	4	EPS Granulat zementgebunden bis 125 kg/m³	0,060	0,060	1,000
/	034n	✓	₹	5	Stahlbeton	0,200	2,500	0,080
				-	Wärmeübergangswiderstand Unten Rs,i	-	-	0,130
	OMn							
		*) R _T	It. EN I	SO 6946	S = R _{si} + Summe R-Wert der Schichten + R _{se}	0,340		1,989 *)
		U-We	ert [W/m	n²K]				0,50

[☑] wird in der U-Wert Berechnung / OI3 Berechnung berücksichtigt

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: April 2007 ist erfüllt.

Geforderter U-Wert		Berechneter U-Wert	
0,90	W/m²K	0,50	W/m²K

Bauteil: E9: DE über Stellplätze EG_bp

Geforderter U-Wert		Berechneter U-Wert	
0,20	W/m²K	0,17	W/m²K

Bauteil - Dokumentation Wärmeübertragung durch Bauteile (U-Wert) nach EN ISO 6946

Projekt: Wr.Neustadt - Werftgasse Datum: 4. September 2012 Blatt 25

Bauteil: E1: DE über KG/TG_bp

Verwendung: Decke mit Warmestrom nach unten							
Konstruktion	U	OI3	Nr	Bezeichnung	Dicke	Lambda	R-Wert
					[m]	[W/mK]	[m ² *K/W]
			-	Wärmeübergangswiderstand Oben Rs,e	-	-	0,170
	\mathbf{Z}		1	Zementestrich	0,060	1,400	0,043
	₩.		2	7.2.5.2 Polyethylen-Folien Dicke d >=0,1 mm	0,000	1,000	0,000
	\mathbf{Z}		3	TRITTSCHALL DÄMMPLATTEN TDPS 25	0,020	0,033	0,606
	✓	\mathbf{Z}	4	CORBLANIT EPS W 20 10	0,100	0,038	2,632
	\mathbf{Z}		5	Dampfbremse 1)	0,000	0,200	0,001
	₩.	✓	6	EPS Granulat zementgebunden bis 125 kg/m³	0,060	0,060	1,000
resentes entres entre entre entre entre entre entre	\mathbf{Z}		7	Stahlbeton	0,200	2,500	0,080
			-	Wärmeübergangswiderstand Unten Rs,i	-	-	0,170
· ·	*) R _T	lt. EN I	SO 6946	S = R _{si} + Summe R-Wert der Schichten + R _{se}	0,440		4,702 *)
	U-We	ert [W/m	n²K]			·	0,21

[☑] wird in der U-Wert Berechnung / OI3 Berechnung berücksichtigt

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: April 2007 ist erfüllt.

Geforderter U-Wert		Berechneter U-Wert	
0,40	W/m²K	0,21	W/m²K

Bauteil: E9a: DE über Fahrr./KIWA_bp

Geforderter U-Wert		Berechneter U-Wert		
0,40	W/m²K	0,19	W/m²K	

¹⁾ Diese Baustoffe stammen aus dem benutzereigenen Baustoffkatalog!

Bauteil - Dokumentation Wärmeübertragung durch Bauteile (U-Wert) nach EN ISO 6946

Projekt: Wr.Neustadt - Werftgasse Datum: 4. September 2012 Blatt 26

Bauteil: A1: Dach bekiest_bp

Konstruktion	U	OI3	Nr	Bezeichnung	Dicke	Lambda	R-Wert
					[m]	[W/mK]	[m ² *K/W]
			-	Wärmeübergangswiderstand Aussen Rs,e	-	-	0,040
	\mathbf{x}	V	1	Rundriesel 16/32 1)	0,080	0,430	0,186
	✓	₩.	2	Filtervlies 1)	0,000	1,000	0,000
	\mathbf{x}	¥	3	Vlies (PE)	0,005	0,500	0,010
	•	•	4	4.434.002 XPS-G (glatte Oberfl., Zellgas Luft, d < 70 mm)	0,200	0,035	5,714
	✓	₩.	5	Polymerbitumen-Dichtungsbahn	0,020	0,230	0,087
	✓	4	6	Stahlbeton	0,200	2,500	0,080
			-	Wärmeübergangswiderstand Innen Rs,i	-	-	0,100
	4) 5		00.004		0.505		0.047.4
				S = R _{si} + Summe R-Wert der Schichten + R _{se}	0,505		6,217 *)
	U-We	ert [W/n	ո²K∣				0,16

[☑] wird in der U-Wert Berechnung / OI3 Berechnung berücksichtigt

Geforderter U-Wert		Berechneter U-Wert		
0,20	W/m²K	0.16	W/m²K	

¹⁾ Diese Baustoffe stammen aus dem benutzereigenen Baustoffkatalog!

Bauteil-Dokumentation Berechnung des Wärmedurchgangskoeffizienten nach EN ISO 10077-1

Projekt: Wr.Neustadt - Werftgasse Datum: 4. September 2012 Blatt 27

Außenfenster: F01A: 80/145

 Breite :
 0,80 m

 Höhe :
 1,45 m

 Glasumfang :
 3,70 m

Dichtheit nach ÖNORM B 5300 klassifiziert :

Sehr gut abgedichtet

Sanierung NÖ: Fenster unverändert

Rechteckige Grundform

Bezeichnung	Anzahl	U-Wert	Breite	Baustoff
		[W/m ² K]	[m]	
Innere Füllfläche	1	1,10	-	Zweifach-Wärmeschutzglas low beschichtet 4-10-4 (Ar) (Ug 1,1)(g 0,62)
				1)
Rahmen	1	1,30	0,10	PVC-Hohlprofile 5 Kammern (Uf 1,3)
Vertikal-Sprossen	0		0,00	PVC-Hohlprofile 5 Kammern (Uf 1,3)
Horizontal-Sprossen	0		0,00	PVC-Hohlprofile 5 Kammern (Uf 1,3)

1) Diese Baustoffe stammen aus dem benutzereigenen Baustoffkatalog!

Zwischen Rahmen und Glas wurden Wärmebrücken berücksichtigt:

Doppel- und Dreifachisoliergläser mit Beschichtung / Holz- und Kunststoffrahmen

 $_{\Psi}$: 0,04 W/(m·K) Glasumfang: 3,70 m

Zusammenfassung

Glasfläche: $0,75 \text{ m}^2$ Rahmenfläche: $0,41 \text{ m}^2$

 Gesamtfläche :
 1,16 m²
 Glasanteil :
 65%

 U-Wert :
 1,28 W/m²K
 g-Wert :
 0,62

U-Wert bei 1,23m x 1,48m : 1,24 W/m²K

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: April 2007 ist erfüllt.

Geforderter U-Wert Berechneter U-Wert Berechneter U-Wert bei 1,23m x 1,48m

1,40 W/m²K 1,24 W/m²K 1,28 W/m²K

Bauteil-Dokumentation Berechnung des Wärmedurchgangskoeffizienten nach EN ISO 10077-1

Projekt: Wr.Neustadt - Werftgasse Datum: 4. September 2012 Blatt 28

Außenfenster: F01B: 80/145

Breite: 0,90 m Höhe: 1,50 m

Dichtheit nach ÖNORM B 5300 klassifiziert :

Sehr gut abgedichtet

Sanierung NÖ: Fenster unverändert

Rechteckige Grundform

Bezeichnung	Anzahl	U-Wert [W/m²K]	Breite [m]	Baustoff
Innere Füllfläche	1	1,10	-	Zweifach-Wärmeschutzglas low beschichtet 4-10-4 (Ar) (Ug 1,1)(g 0,56)
				1)
Rahmen	1	1,80	0,05	Alu Pfosten/Riegel U = 1,8 1)
Vertikal-Sprossen	0		0,00	Alu Pfosten/Riegel U = 1,8 1)
Horizontal-Sprossen	0		0,00	Alu Pfosten/Riegel U = 1,8 1)

1) Diese Baustoffe stammen aus dem benutzereigenen Baustoffkatalog!

Zwischen Rahmen und Glas wurden Wärmebrücken berücksichtigt:

Doppel- und Dreifachisoliergläser mit Beschichtung / Holz- und Kunststoffrahmen

 $_{\Psi}$: 0,07 W/(m·K) Glasumfang : 4,40 m

Zusammenfassung

Glasfläche: 1,12 m² Rahmenfläche: 0,23 m²

 Gesamtfläche :
 1,35 m²
 Glasanteil :
 83%

 U-Wert :
 1,43 W/m²K
 g-Wert :
 0,56

U-Wert bei 1,23m x 1,48m : 1,38 W/m²K

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: April 2007 ist erfüllt.

Geforderter U-Wert Berechneter U-Wert Berechneter U-Wert bei 1,23m x 1,48m

1,40 W/m²K 1,38 W/m²K 1,43 W/m²K

Bauteil-Dokumentation Berechnung des Wärmedurchgangskoeffizienten nach EN ISO 10077-1

Projekt: Wr.Neustadt - Werftgasse Datum: 4. September 2012 Blatt 29

Außenfenster: F01C: 80/145

 Breite :
 0,80 m

 Höhe :
 1,45 m

 Glasumfang :
 4,10 m

Dichtheit nach ÖNORM B 5300 klassifiziert :

Sehr gut abgedichtet

Sanierung NÖ: Fenster unverändert

81%

Rechteckige Grundform

Bezeichnung	Anzahl	U-Wert [W/m²K]	Breite [m]	Baustoff
Innere Füllfläche	1	1,10	-	Zweifach-Wärmeschutzglas low beschichtet 4-10-4 (Ar) (Ug 1,1)(g 0,56)
				1)
Rahmen	1	1,80	0,05	Alu Pfosten/Riegel U = 1,8 1)
Vertikal-Sprossen	0		0,00	Alu Pfosten/Riegel U = 1,8 1)
Horizontal-Sprossen	0		0,00	Alu Pfosten/Riegel U = 1,8 1)

1) Diese Baustoffe stammen aus dem benutzereigenen Baustoffkatalog!

Zwischen Rahmen und Glas wurden Wärmebrücken berücksichtigt:

Doppel- und Dreifachisoliergläser mit Beschichtung / Holz- und Kunststoffrahmen

 $_{\Psi}$: 0,07 W/(m·K) Glasumfang : 4,10 m

Zusammenfassung

Glasfläche: 0,95 m²

Rahmenfläche: 0,22 m² **Gesamtfläche:** 1,16 m²

J-Wert: 1,46 W/m²K g-Wert: 0,56

U-Wert bei 1,23m x 1,48m : 1,38 W/m²K

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: April 2007 ist erfüllt.

Geforderter U-Wert Berechneter U-Wert Berechneter U-Wert bei 1,23m x 1,48m

Glasanteil:

1,40 W/m²K 1,38 W/m²K 1,46 W/m²K

Bauteil-Dokumentation Berechnung des Wärmedurchgangskoeffizienten nach EN ISO 10077-1

Projekt: Wr.Neustadt - Werftgasse Datum: 4. September 2012 Blatt 30

Außenfenster: F01D: 80/145

 Breite :
 0,80 m

 Höhe :
 1,45 m

 Glasumfang :
 4,10 m

Dichtheit nach ÖNORM B 5300 klassifiziert :

Sehr gut abgedichtet

Sanierung NÖ: Fenster unverändert

Rechteckige Grundform

Bezeichnung	Anzahl	U-Wert	Breite	Baustoff
		[W/m ² K]	[m]	
Innere Füllfläche	1	1,10	-	Zweifach-Wärmeschutzglas low beschichtet 4-10-4 (Ar) (Ug 1,1)(g 0,56)
				1)
Rahmen	1	1,80	0,05	Alu Pfosten/Riegel U = 1,8 1)
Vertikal-Sprossen	0		0,00	Alu Pfosten/Riegel U = 1,8 1)
Horizontal-Sprossen	0		0,00	Alu Pfosten/Riegel U = 1,8 1)

1) Diese Baustoffe stammen aus dem benutzereigenen Baustoffkatalog!

Zwischen Rahmen und Glas wurden Wärmebrücken berücksichtigt:

Doppel- und Dreifachisoliergläser mit Beschichtung / Holz- und Kunststoffrahmen

 $_{\Psi}$: 0,07 W/(m·K) Glasumfang : 4,10 m

Zusammenfassung

 $\begin{array}{ll} \mbox{Glasfläche}: & 0,95 \ \mbox{m}^2 \\ \mbox{Rahmenfläche}: & 0,22 \ \mbox{m}^2 \\ \end{array}$

 Gesamtfläche :
 1,16 m²
 Glasanteil :
 81%

 U-Wert :
 1,46 W/m²K
 g-Wert :
 0,56

U-Wert bei 1,23m x 1,48m : 1,38 W/m²K

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: April 2007 ist erfüllt.

Geforderter U-Wert Berechneter U-Wert Berechneter U-Wert bei 1,23m x 1,48m

1,40 W/m²K 1,38 W/m²K 1,46 W/m²K

Bauteil-Dokumentation Berechnung des Wärmedurchgangskoeffizienten nach EN ISO 10077-1

Projekt: Wr.Neustadt - Werftgasse Datum: 4. September 2012 Blatt 31

Außenfenster: F02A: 90/230

 Breite :
 0,90 m

 Höhe :
 2,30 m

 Glasumfang :
 5,60 m

Dichtheit nach ÖNORM B 5300 klassifiziert :

Sehr gut abgedichtet

Sanierung NÖ: Fenster unverändert

Rechteckige Grundform

Bezeichnung	Anzahl	U-Wert	Breite	Baustoff
		[W/m ² K]	[m]	
Innere Füllfläche	1	1,10	-	Zweifach-Wärmeschutzglas low beschichtet 4-10-4 (Ar) (Ug 1,1)(g 0,62)
				1)
Rahmen	1	1,30	0,10	PVC-Hohlprofile 5 Kammern (Uf 1,3)
Vertikal-Sprossen	0		0,16	PVC-Hohlprofile 5 Kammern (Uf 1,3)
Horizontal-Sprossen	0		0,00	PVC-Hohlprofile 5 Kammern (Uf 1,3)

1) Diese Baustoffe stammen aus dem benutzereigenen Baustoffkatalog!

Zwischen Rahmen und Glas wurden Wärmebrücken berücksichtigt:

Doppel- und Dreifachisoliergläser mit Beschichtung / Holz- und Kunststoffrahmen

 $_{\Psi}$: 0,04 W/(m·K) Glasumfang : 5,60 m

Zusammenfassung

Glasfläche: 1,47 m² Rahmenfläche: 0,60 m²

Gesamtfläche: 2,07 m² Glasanteil: 71%

U-Wert : 1,25 W/m²K g-Wert : 0,62 U-Wert bei 1,23m x 1,48m : 1,24 W/m²K

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: April 2007 ist erfüllt.

Geforderter U-Wert Berechneter U-Wert Berechneter U-Wert bei 1,23m x 1,48m

1,40 W/m²K 1,24 W/m²K 1,25 W/m²K

Bauteil-Dokumentation Berechnung des Wärmedurchgangskoeffizienten nach EN ISO 10077-1

Projekt: Wr.Neustadt - Werftgasse Datum: 4. September 2012 Blatt 32

Außenfenster: F02B: 90/230

 Breite :
 0,90 m

 Höhe :
 2,30 m

 Glasumfang :
 5,60 m

Dichtheit nach ÖNORM B 5300 klassifiziert :

Sehr gut abgedichtet

Sanierung NÖ: Fenster unverändert

Rechteckige Grundform

Bezeichnung	Anzahl	U-Wert	Breite	Baustoff
		[W/m ² K]	[m]	
Innere Füllfläche	1	1,10	-	Zweifach-Wärmeschutzglas low beschichtet 4-10-4 (Ar) (Ug 1,1)(g 0,62)
				1)
Rahmen	1	1,30	0,10	PVC-Hohlprofile 5 Kammern (Uf 1,3)
Vertikal-Sprossen	0		0,16	PVC-Hohlprofile 5 Kammern (Uf 1,3)
Horizontal-Sprossen	0		0,00	PVC-Hohlprofile 5 Kammern (Uf 1,3)

1) Diese Baustoffe stammen aus dem benutzereigenen Baustoffkatalog!

Zwischen Rahmen und Glas wurden Wärmebrücken berücksichtigt:

Doppel- und Dreifachisoliergläser mit Beschichtung / Holz- und Kunststoffrahmen

 $_{\Psi}$: 0,04 W/(m·K) Glasumfang : 5,60 m

Zusammenfassung

Glasfläche: 1,47 m² Rahmenfläche: 0,60 m²

Gesamtfläche: 2,07 m² Glasanteil: 71%

U-Wert: 1,25 W/m²K g-Wert: 0,62

U-Wert bei 1,23m x 1,48m : 1,24 W/m²K

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: April 2007 ist erfüllt.

Geforderter U-Wert Berechneter U-Wert Berechneter U-Wert bei 1,23m x 1,48m

1,40 W/m²K 1,24 W/m²K 1,25 W/m²K

Bauteil-Dokumentation Berechnung des Wärmedurchgangskoeffizienten nach EN ISO 10077-1

Projekt: Wr.Neustadt - Werftgasse Datum: 4. September 2012 Blatt 33

Außenfenster: F02C: 90/230

 Breite :
 0,90 m

 Höhe :
 2,30 m

 Glasumfang :
 5,60 m

Dichtheit nach ÖNORM B 5300 klassifiziert :

Sehr gut abgedichtet

Sanierung NÖ: Fenster unverändert

0,62

Rechteckige Grundform

Bezeichnung	Anzahl	U-Wert	Breite	Baustoff
		[W/m ² K]	[m]	
Innere Füllfläche	1	1,10	-	Zweifach-Wärmeschutzglas low beschichtet 4-10-4 (Ar) (Ug 1,1)(g 0,62)
				1)
Rahmen	1	1,30	0,10	PVC-Hohlprofile 5 Kammern (Uf 1,3)
Vertikal-Sprossen	0		0,16	PVC-Hohlprofile 5 Kammern (Uf 1,3)
Horizontal-Sprossen	0		0,00	PVC-Hohlprofile 5 Kammern (Uf 1,3)

1) Diese Baustoffe stammen aus dem benutzereigenen Baustoffkatalog!

Zwischen Rahmen und Glas wurden Wärmebrücken berücksichtigt:

Doppel- und Dreifachisoliergläser mit Beschichtung / Holz- und Kunststoffrahmen

 $_{\Psi}$: 0,04 W/(m·K) Glasumfang : 5,60 m

Zusammenfassung

Glasfläche: 1,47 m² Rahmenfläche: 0,60 m²

Gesamtfläche: 2,07 m² Glasanteil: 71%

U-Wert : 1,25 W/m²K g-Wert : U-Wert bei 1,23m x 1,48m : 1,24 W/m²K

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: April 2007 ist erfüllt.

Geforderter U-Wert Berechneter U-Wert Berechneter U-Wert bei 1,23m x 1,48m

1,40 W/m²K 1,24 W/m²K 1,25 W/m²K

Bauteil-Dokumentation Berechnung des Wärmedurchgangskoeffizienten nach EN ISO 10077-1

Projekt: Wr.Neustadt - Werftgasse Datum: 4. September 2012 Blatt 34

Außenfenster: F03A: 170/230

 Breite :
 1,70 m

 Höhe :
 2,30 m

 Glasumfang :
 11,08 m

Dichtheit nach ÖNORM B 5300 klassifiziert :

Sehr gut abgedichtet

Sanierung NÖ: Fenster unverändert

0,62

Rechteckige Grundform

Bezeichnung	Anzahl	U-Wert [W/m²K]	Breite [m]	Baustoff
Innere Füllfläche	1	1,10	-	Zweifach-Wärmeschutzglas low beschichtet 4-10-4 (Ar) (Ug 1,1)(g 0,62)
				1)
Rahmen	1	1,30	0,10	PVC-Hohlprofile 5 Kammern (Uf 1,3)
Vertikal-Sprossen	1	1,30	0,16	PVC-Hohlprofile 5 Kammern (Uf 1,3)
Horizontal-Sprossen	0		0,00	PVC-Hohlprofile 5 Kammern (Uf 1,3)

¹⁾ Diese Baustoffe stammen aus dem benutzereigenen Baustoffkatalog!

Zwischen Rahmen und Glas wurden Wärmebrücken berücksichtigt:

Doppel- und Dreifachisoliergläser mit Beschichtung / Holz- und Kunststoffrahmen

 $_{\Psi}$: 0,04 W/(m·K) Glasumfang : 11,08 m

Zusammenfassung

Glasfläche: 2,81 m² Rahmenfläche: 1,10 m²

Gesamtfläche: 3,91 m² Glasanteil: 72%

U-Wert : 1,26 W/m²K U-Wert bei 1,23m x 1,48m : 1,24 W/m²K

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: April 2007 ist erfüllt.

Geforderter U-Wert Berechneter U-Wert Berechneter U-Wert bei 1,23m x 1,48m

g-Wert:

1,40 W/m²K 1,24 W/m²K 1,26 W/m²K

Bauteil-Dokumentation Berechnung des Wärmedurchgangskoeffizienten nach EN ISO 10077-1

Projekt: Wr.Neustadt - Werftgasse Datum: 4. September 2012 Blatt 35

Außenfenster: F03B: 170/230

 Breite :
 1,70 m

 Höhe :
 2,30 m

 Glasumfang :
 11,08 m

Dichtheit nach ÖNORM B 5300 klassifiziert :

Sehr gut abgedichtet

Sanierung NÖ: Fenster unverändert

72%

Rechteckige Grundform

Bezeichnung	Anzahl	U-Wert [W/m²K]	Breite [m]	Baustoff
Innere Füllfläche	1	1,10	-	Zweifach-Wärmeschutzglas low beschichtet 4-10-4 (Ar) (Ug 1,1)(g 0,62)
				1)
Rahmen	1	1,30	0,10	PVC-Hohlprofile 5 Kammern (Uf 1,3)
Vertikal-Sprossen	1	1,30	0,16	PVC-Hohlprofile 5 Kammern (Uf 1,3)
Horizontal-Sprossen	0		0,00	PVC-Hohlprofile 5 Kammern (Uf 1,3)

1) Diese Baustoffe stammen aus dem benutzereigenen Baustoffkatalog!

Zwischen Rahmen und Glas wurden Wärmebrücken berücksichtigt:

Doppel- und Dreifachisoliergläser mit Beschichtung / Holz- und Kunststoffrahmen

 $_{\Psi}$: 0,04 W/(m·K) Glasumfang : 11,08 m

Zusammenfassung

Glasfläche: 2,81 m²

Rahmenfläche: 1,10 m²
Gesamtfläche: 3,91 m²

J-Wert: 1,26 W/m²K g-Wert: 0,62

U-Wert bei 1,23m x 1,48m : 1,24 W/m²K

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: April 2007 ist erfüllt.

Geforderter U-Wert Berechneter U-Wert Berechneter U-Wert bei 1,23m x 1,48m

Glasanteil:

1,40 W/m²K 1,24 W/m²K 1,26 W/m²K

Bauteil-Dokumentation Berechnung des Wärmedurchgangskoeffizienten nach EN ISO 10077-1

Projekt: Wr.Neustadt - Werftgasse Datum: 4. September 2012 Blatt 36

Außenfenster: F05B: 60/80

 Breite :
 0,60 m

 Höhe :
 0,80 m

 Glasumfang :
 2,40 m

Dichtheit nach ÖNORM B 5300 klassifiziert :

Sehr gut abgedichtet

Sanierung NÖ: Fenster unverändert

Rechteckige Grundform

Bezeichnung	Anzahl	U-Wert	Breite	Baustoff
		[W/m ² K]	[m]	
Innere Füllfläche	1	1,10	-	Zweifach-Wärmeschutzglas low beschichtet 4-10-4 (Ar) (Ug 1,1)(g 0,56)
				1)
Rahmen	1	1,80	0,05	Alu Pfosten/Riegel U = 1,8 1)
Vertikal-Sprossen	0		0,00	Alu Pfosten/Riegel U = 1,8 1)
Horizontal-Sprossen	0		0,00	Alu Pfosten/Riegel U = 1,8 1)

1) Diese Baustoffe stammen aus dem benutzereigenen Baustoffkatalog!

Zwischen Rahmen und Glas wurden Wärmebrücken berücksichtigt:

Doppel- und Dreifachisoliergläser mit Beschichtung / Holz- und Kunststoffrahmen

 ψ : 0,07 W/(m·K) Glasumfang : 2,40 m

Zusammenfassung

 $\begin{array}{ll} \mbox{Glasfläche}: & 0,35 \ \mbox{m}^2 \\ \mbox{Rahmenfläche}: & 0,13 \ \mbox{m}^2 \end{array}$

 Gesamtfläche :
 0,48 m²
 Glasanteil :
 73%

 U-Wert :
 1,61 W/m²K
 g-Wert :
 0,56

U-Wert bei 1,23m x 1,48m : 1,38 W/m²K

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: April 2007 ist erfüllt.

Geforderter U-Wert Berechneter U-Wert Berechneter U-Wert bei 1,23m x 1,48m

1,40 W/m²K 1,38 W/m²K 1,61 W/m²K

Bauteil-Dokumentation Berechnung des Wärmedurchgangskoeffizienten nach EN ISO 10077-1

Projekt: Wr.Neustadt - Werftgasse Datum: 4. September 2012 Blatt 37

Außenfenster: F05C: 60/80

 Breite :
 0,60 m

 Höhe :
 0,80 m

 Glasumfang :
 2,40 m

Dichtheit nach ÖNORM B 5300 klassifiziert :

Sehr gut abgedichtet

Sanierung NÖ: Fenster unverändert

Rechteckige Grundform

Bezeichnung	Anzahl	U-Wert	Breite	Baustoff
		[W/m ² K]	[m]	
Innere Füllfläche	1	1,10	-	Zweifach-Wärmeschutzglas low beschichtet 4-10-4 (Ar) (Ug 1,1)(g 0,56)
				1)
Rahmen	1	1,80	0,05	Alu Pfosten/Riegel U = 1,8 1)
Vertikal-Sprossen	0		0,00	Alu Pfosten/Riegel U = 1,8 1)
Horizontal-Sprossen	0		0,00	Alu Pfosten/Riegel U = 1,8 1)

1) Diese Baustoffe stammen aus dem benutzereigenen Baustoffkatalog!

Zwischen Rahmen und Glas wurden Wärmebrücken berücksichtigt:

Doppel- und Dreifachisoliergläser mit Beschichtung / Holz- und Kunststoffrahmen

 $_{\Psi}$: 0,07 W/(m·K) Glasumfang : 2,40 m

Zusammenfassung

 $\begin{array}{ll} \mbox{Glasfläche}: & 0,35 \ \mbox{m}^2 \\ \mbox{Rahmenfläche}: & 0,13 \ \mbox{m}^2 \end{array}$

 Gesamtfläche :
 0,48 m²
 Glasanteil :
 73%

 U-Wert :
 1,61 W/m²K
 g-Wert :
 0,56

U-Wert bei 1,23m x 1,48m : 1,38 W/m²K

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: April 2007 ist erfüllt.

Geforderter U-Wert Berechneter U-Wert bei 1,23m x 1,48m

1,40 W/m²K 1,38 W/m²K 1,61 W/m²K

Bauteil-Dokumentation Berechnung des Wärmedurchgangskoeffizienten nach EN ISO 10077-1

Projekt: Wr.Neustadt - Werftgasse Datum: 4. September 2012 Blatt 38

Außenfenster: F05D: 60/80

 Breite :
 0,60 m

 Höhe :
 0,80 m

 Glasumfang :
 2,40 m

Dichtheit nach ÖNORM B 5300 klassifiziert :

Sehr gut abgedichtet

Sanierung NÖ: Fenster unverändert

Rechteckige Grundform

Bezeichnung	Anzahl	U-Wert [W/m ² K]	Breite [m]	Baustoff
Innere Füllfläche	1	1,10	-	Zweifach-Wärmeschutzglas low beschichtet 4-10-4 (Ar) (Ug 1,1)(g 0,56)
				1)
Rahmen	1	1,80	0,05	Alu Pfosten/Riegel U = 1,8 1)
Vertikal-Sprossen	0		0,00	Alu Pfosten/Riegel U = 1,8 1)
Horizontal-Sprossen	0		0,00	Alu Pfosten/Riegel U = 1,8 1)

¹⁾ Diese Baustoffe stammen aus dem benutzereigenen Baustoffkatalog!

Zwischen Rahmen und Glas wurden Wärmebrücken berücksichtigt:

Doppel- und Dreifachisoliergläser mit Beschichtung / Holz- und Kunststoffrahmen

 ψ : 0,07 W/(m·K) Glasumfang : 2,40 m

Zusammenfassung

Glasfläche: $0,35 \text{ m}^2$ Rahmenfläche: $0,13 \text{ m}^2$

 Gesamtfläche :
 0,48 m²
 Glasanteil :
 73%

 U-Wert :
 1,61 W/m²K
 g-Wert :
 0,56

U-Wert bei 1,23m x 1,48m : 1,38 W/m²K

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: April 2007 ist erfüllt.

Geforderter U-Wert Berechneter U-Wert bei 1,23m x 1,48m

1,40 W/m²K 1,38 W/m²K 1,61 W/m²K

Bauteil-Dokumentation Berechnung des Wärmedurchgangskoeffizienten nach EN ISO 10077-1

Projekt: Wr.Neustadt - Werftgasse Datum: 4. September 2012 Blatt 39

Außenfenster: VGL 180/220

 Breite :
 1,80 m

 Höhe :
 2,20 m

 Glasumfang :
 11,48 m

Dichtheit nach ÖNORM B 5300 klassifiziert :

Sehr gut abgedichtet

Sanierung NÖ: Fenster unverändert

Rechteckige Grundform

Bezeichnung	Anzahl	U-Wert [W/m²K]	Breite [m]	Baustoff
Innere Füllfläche	1	1,10	-	Zweifach-Wärmeschutzglas low beschichtet 4-10-4 (Ar) (Ug 1,1)(g 0,56)
				1)
Rahmen	1	1,80	0,05	Alu Pfosten/Riegel U = 1,8 1)
Vertikal-Sprossen	1	1,80	0,16	Alu Pfosten/Riegel U = 1,8 1)
Horizontal-Sprossen	0		0,00	Alu Pfosten/Riegel U = 1,8 1)

1) Diese Baustoffe stammen aus dem benutzereigenen Baustoffkatalog!

Zwischen Rahmen und Glas wurden Wärmebrücken berücksichtigt:

Doppel- und Dreifachisoliergläser mit Beschichtung / Holz- und Kunststoffrahmen

 $_{\Psi}$: 0,07 W/(m·K) Glasumfang : 11,48 m

Zusammenfassung

Glasfläche: 3,23 m² Rahmenfläche: 0,73 m²

 Gesamtfläche :
 3,96 m²
 Glasanteil :
 82%

 U-Wert :
 1,42 W/m²K
 g-Wert :
 0,56

U-Wert bei 1,23m x 1,48m : 1,38 W/m²K

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: April 2007 ist erfüllt.

Geforderter U-Wert Berechneter U-Wert Berechneter U-Wert bei 1,23m x 1,48m


1,40 W/m²K 1,38 W/m²K 1,42 W/m²K

Bauteil-Dokumentation Berechnung des Wärmedurchgangskoeffizienten nach EN ISO 10077-1

Projekt: Wr.Neustadt - Werftgasse Datum: 4. September 2012 Blatt 40

VGL 211/220 Außenfenster:

Breite: 2,11 m Höhe: 2.20 m Glasumfang: 12,10 m

Dichtheit nach ÖNORM B 5300 klassifiziert :

Sehr gut abgedichtet

Sanierung NÖ: Fenster unverändert

0,56

Berechneter U-Wert

Rechteckige Grundform

Bezeichnung	Anzahl	U-Wert [W/m²K]	Breite [m]	Baustoff
Innere Füllfläche	1	1,10	-	Zweifach-Wärmeschutzglas low beschichtet 4-10-4 (Ar) (Ug 1,1)(g 0,56)
				1)
Rahmen	1	1,80	0,05	Alu Pfosten/Riegel U = 1,8 1)
Vertikal-Sprossen	1	1,80	0,16	Alu Pfosten/Riegel U = 1,8 1)
Horizontal-Sprossen	0		0,00	Alu Pfosten/Riegel U = 1,8 1)

Detail-Daten

Bezeichnung	Anzahl	Fläche	Dicke	Baustoff	g-Wert
horizontales Rahmen-	1	0,10 m ²	0,10 m	Alu Pfosten/Riegel U = 1,8 1)	Ţ-
Rechteck					
vertikales Rahmen-Rechteck	1	0,11 m ²	0,10 m	Alu Pfosten/Riegel U = 1,8 1)	-
horizontales Rahmen-	1	0,10 m ²	0,10 m	Alu Pfosten/Riegel U = 1,8 1)	-
Rechteck					
vertikales Rahmen-Rechteck	1	0,11 m ²	0,10 m	Alu Pfosten/Riegel U = 1,8 1)	-
Glas-Rechteck	1	1,94 m ²	0,02 m	Zweifach-Wärmeschutzglas low beschichtet 4-10-4 (Ar) (Ug	0,56
				1,1)(g 0,56) 1)	
Glas-Rechteck	1	1,94 m ²	0,02 m	Zweifach-Wärmeschutzglas low beschichtet 4-10-4 (Ar) (Ug	0,56
				1,1)(g 0,56) 1)	
Sprossen-Rechteck vertikal	1	0,34 m ²	0,10 m	Alu Pfosten/Riegel U = 1,8 1)	-

¹⁾ Diese Baustoffe stammen aus dem benutzereigenen Baustoffkatalog!

Zwischen Rahmen und Glas wurden Wärmebrücken berücksichtigt:

Doppel- und Dreifachisoliergläser mit Beschichtung / Holz- und Kunststoffrahmen

1,38 W/m2K

0,07 W/(m·K) 12,10 m Glasumfang:

Zusammenfassung

U-Wert:

Glasfläche: 3,89 m²

Rahmenfläche: 0,76 m²

Geforderter U-Wert

Gesamtfläche: 4,64 m² Glasanteil: 84%

U-Wert bei 1,23m x 1,48m: 1,38 W/m2K

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: April 2007 ist erfüllt.

g-Wert:

W/m²K W/m²K 38 W/m²K 1,40 1,38

Berechneter U-Wert

bei 1,23m x 1,48m

Bauteil-Dokumentation Berechnung des Wärmedurchgangskoeffizienten nach EN ISO 10077-1

Projekt: Wr.Neustadt - Werftgasse Datum: 4. September 2012 Blatt 41

Außenfenster: VGL 314/220

 Breite :
 3,14 m

 Höhe :
 2,20 m

 Glasumfang :
 18,04 m

Dichtheit nach ÖNORM B 5300 klassifiziert :

Sehr gut abgedichtet

Sanierung NÖ: Fenster unverändert

Rechteckige Grundform

Bezeichnung	Anzahl	U-Wert	Breite	Baustoff
		[W/m ² K]	[m]	
Innere Füllfläche	1	1,10	-	Zweifach-Wärmeschutzglas low beschichtet 4-10-4 (Ar) (Ug 1,1)(g 0,56)
				1)
Rahmen	1	1,80	0,05	Alu Pfosten/Riegel U = 1,8 1)
Vertikal-Sprossen	2	1,80	0,16	Alu Pfosten/Riegel U = 1,8 1)
Horizontal-Sprossen	0		0,00	Alu Pfosten/Riegel U = 1,8 1)

1) Diese Baustoffe stammen aus dem benutzereigenen Baustoffkatalog!

Zwischen Rahmen und Glas wurden Wärmebrücken berücksichtigt:

Doppel- und Dreifachisoliergläser mit Beschichtung / Holz- und Kunststoffrahmen

 $_{\Psi}$: 0,07 W/(m·K) Glasumfang: 18,04 m

Zusammenfassung

Glasfläche: 5,71 m² Rahmenfläche: 1,20 m²

 Gesamtfläche :
 6,91 m²
 Glasanteil :
 83%

 U-Wert :
 1,39 W/m²K
 g-Wert :
 0,56

U-Wert bei 1,23m x 1,48m : 1,38 W/m²K

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: April 2007 ist erfüllt.

Geforderter U-Wert Berechneter U-Wert Berechneter U-Wert bei 1,23m x 1,48m

1,40 W/m²K 1,38 W/m²K 1,39 W/m²K

Bauteil-Dokumentation Berechnung des Wärmedurchgangskoeffizienten nach EN ISO 10077-1

Projekt: Wr.Neustadt - Werftgasse Datum: 4. September 2012 Blatt 42

Außentür: T01A: 90/210

 Breite :
 0,90 m

 Höhe :
 2,10 m

 Glasumfang :
 5,20 m

Dichtheit nach ÖNORM B 5300 klassifiziert :

Sehr gut abgedichtet

Sanierung NÖ: Tür unverändert

Rechteckige Grundform

Bezeichnung	Anzahl	U-Wert [W/m²K]	Breite [m]	Baustoff
Innere Füllfläche	1	1,70	-	Außentür Standard
Rahmen	1	1,30	0,10	Weichholz (500 kg/m³, Lambda 0,13) 110 mm (Uf 1,3)
Vertikal-Sprossen	0		0,00	Weichholz (500 kg/m³, Lambda 0,13) 110 mm (Uf 1,3)
Horizontal-Sprossen	0		0.00	Weichholz (500 kg/m ³ , Lambda 0.13) 110 mm (Uf 1.3)

Zwischen Rahmen und Glas wurden Wärmebrücken berücksichtigt:

Doppel- und Mehrfachgläser, unbeschichtet / Metallrahmen mit Wärmebrücken-Unterbrechung

 ψ : 0,06 W/(m·K) Glasumfang : 5,20 m

Zusammenfassung

Glasfläche: 0,00 m²

Rahmenfläche: 1,89 m²

Gesamtfläche: 1,89 m² Glasanteil: 0%

U-Wert: 1,58 W/m²K g-Wert: 0,00

U-Wert bei 1,23m x 1,48m : 1,59 W/m²K

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: April 2007 ist erfüllt.

Geforderter U-Wert

Berechneter U-Wert bei 1,23m x 1,48m **Berechneter U-Wert**

1,70 W/m²K 1,59 W/m²K

1,58 W/m²K

Bauteil-Dokumentation Berechnung des Wärmedurchgangskoeffizienten nach EN ISO 10077-1

Projekt: Wr.Neustadt - Werftgasse Datum: 4. September 2012 Blatt 43

Außentür: T01B: 90/210

 Breite :
 0,90 m

 Höhe :
 2,10 m

 Glasumfang :
 5,20 m

Dichtheit nach ÖNORM B 5300 klassifiziert :

Sehr gut abgedichtet

Sanierung NÖ: Tür unverändert

Rechteckige Grundform

Bezeichnung	Anzahl	U-Wert [W/m²K]	Breite [m]	Baustoff
Innere Füllfläche	1	1,70	-	Außentür Standard
Rahmen	1	1,30	0,10	Weichholz (500 kg/m³, Lambda 0,13) 110 mm (Uf 1,3)
Vertikal-Sprossen	0		0,00	Weichholz (500 kg/m³, Lambda 0,13) 110 mm (Uf 1,3)
Horizontal-Sprossen	0		0.00	Weichholz (500 kg/m ³ , Lambda 0.13) 110 mm (Uf 1.3)

Zwischen Rahmen und Glas wurden Wärmebrücken berücksichtigt:

Doppel- und Mehrfachgläser, unbeschichtet / Metallrahmen mit Wärmebrücken-Unterbrechung

 ψ : 0,06 W/(m·K) Glasumfang : 5,20 m

Zusammenfassung

Glasfläche: 0,00 m²

Rahmenfläche: 1,89 m²

Gesamtfläche: 1,89 m² Glasanteil: 0%

U-Wert: 1,58 W/m²K g-Wert: 0,00

U-Wert bei 1,23m x 1,48m : 1,59 W/m²K

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: April 2007 ist erfüllt.

Geforderter U-Wert

Berechneter U-Wert bei 1,23m x 1,48m **Berechneter U-Wert**

W/m2K

1,70 W/m²K 1,59 W/m²K 1,58

Bauteil-Dokumentation Berechnung des Wärmedurchgangskoeffizienten nach EN ISO 10077-1

Projekt: Wr.Neustadt - Werftgasse Datum: 4. September 2012 Blatt 44

Außentür: T01C: 90/210

 Breite :
 0,90 m

 Höhe :
 2,10 m

 Glasumfang :
 5,20 m

Dichtheit nach ÖNORM B 5300 klassifiziert :

Sehr gut abgedichtet

Sanierung NÖ: Tür unverändert

Rechteckige Grundform

Bezeichnung	Anzahl	U-Wert [W/m²K]	Breite [m]	Baustoff
Innere Füllfläche	1	1,70	-	Außentür Standard
Rahmen	1	1,30	0,10	Weichholz (500 kg/m³, Lambda 0,13) 110 mm (Uf 1,3)
Vertikal-Sprossen	0		0,00	Weichholz (500 kg/m³, Lambda 0,13) 110 mm (Uf 1,3)
Horizontal-Sprossen	0		0.00	Weichholz (500 kg/m ³ , Lambda 0.13) 110 mm (Uf 1.3)

Zwischen Rahmen und Glas wurden Wärmebrücken berücksichtigt:

Doppel- und Mehrfachgläser, unbeschichtet / Metallrahmen mit Wärmebrücken-Unterbrechung

ψ: 0,06 W/(m·K) Glasumfang: 5,20 m

Zusammenfassung

Glasfläche: 0,00 m²

Rahmenfläche: 1,89 m²

Gesamtfläche: 1,89 m² Glasanteil: 0%

U-Wert: 1,58 W/m²K g-Wert: 0,00

U-Wert bei 1,23m x 1,48m : 1,59 W/m²K

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: April 2007 ist erfüllt.

Geforderter U-Wert Berechneter U-Wert Berechneter U-Wert

bei 1,23m x 1,48m

1,70 W/m²K 1,59 W/m²K 1,58 W/m²K

Bauteil-Dokumentation Berechnung des Wärmedurchgangskoeffizienten nach EN ISO 10077-1

Projekt: Wr.Neustadt - Werftgasse Datum: 4. September 2012 Blatt 45

Innenfenster: F01C: 80/145

 Breite :
 0,80 m

 Höhe :
 1,45 m

 Glasumfang :
 4,10 m

Dichtheit nach ÖNORM B 5300 klassifiziert :

Sehr gut abgedichtet

Sanierung NÖ: Fenster unverändert

Rechteckige Grundform

Bezeichnung	Anzahl	U-Wert	Breite	Baustoff
		[W/m ² K]	[m]	
Innere Füllfläche	1	1,10	-	Zweifach-Wärmeschutzglas low beschichtet 4-10-4 (Ar) (Ug 1,1)(g 0,56)
				1)
Rahmen	1	1,80	0,05	Alu Pfosten/Riegel U = 1,8 1)
Vertikal-Sprossen	0		0,00	Alu Pfosten/Riegel U = 1,8 1)
Horizontal-Sprossen	0		0,00	Alu Pfosten/Riegel U = 1,8 1)

1) Diese Baustoffe stammen aus dem benutzereigenen Baustoffkatalog!

Zwischen Rahmen und Glas wurden Wärmebrücken berücksichtigt:

Doppel- und Dreifachisoliergläser mit Beschichtung / Holz- und Kunststoffrahmen

 $_{\Psi}$: 0,07 W/(m·K) Glasumfang : 4,10 m

Zusammenfassung

Glasfläche: $0,95 \text{ m}^2$ Rahmenfläche: $0,22 \text{ m}^2$

Gesamtfläche: 1,16 m² Glasanteil: 81%

U-Wert : 1,46 W/m²K g-Wert : 0,56 U-Wert bei 1,23m x 1,48m : 1,38 W/m²K

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: April 2007 ist erfüllt.

Geforderter U-Wert Berechneter U-Wert Berechneter U-Wert bei 1,23m x 1,48m

2,50 W/m²K 1,38 W/m²K 1,46 W/m²K

Bauteil-Dokumentation Berechnung des Wärmedurchgangskoeffizienten nach EN ISO 10077-1

Projekt: Wr.Neustadt - Werftgasse Datum: 4. September 2012 Blatt 46

Innenfenster: F05C: 60/80

 Breite :
 0,60 m

 Höhe :
 0,80 m

 Glasumfang :
 2,40 m

Dichtheit nach ÖNORM B 5300 klassifiziert :

Sehr gut abgedichtet

Sanierung NÖ: Fenster unverändert

Rechteckige Grundform

Bezeichnung	Anzahl	U-Wert [W/m²K]	Breite [m]	Baustoff
Innere Füllfläche	1	1,10	i - '	Zweifach-Wärmeschutzglas low beschichtet 4-10-4 (Ar) (Ug 1,1)(g 0,56)
				1)
Rahmen	1	1,80	0,05	Alu Pfosten/Riegel U = 1,8 1)
Vertikal-Sprossen	0		0,00	Alu Pfosten/Riegel U = 1,8 1)
Horizontal-Sprossen	0		0,00	Alu Pfosten/Riegel U = 1,8 1)

¹⁾ Diese Baustoffe stammen aus dem benutzereigenen Baustoffkatalog!

Zwischen Rahmen und Glas wurden Wärmebrücken berücksichtigt:

Doppel- und Dreifachisoliergläser mit Beschichtung / Holz- und Kunststoffrahmen

 $_{\Psi}$: 0,07 W/(m·K) Glasumfang : 2,40 m

Zusammenfassung

Glasfläche: 0,35 m² Rahmenfläche: 0,13 m²

 Gesamtfläche :
 0,48 m²
 Glasanteil :
 73%

 U-Wert :
 1,61 W/m²K
 g-Wert :
 0,56

U-Wert bei 1,23m x 1,48m : 1,38 W/m²K

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: April 2007 ist erfüllt.

Geforderter U-Wert Berechneter U-Wert Berechneter U-Wert bei 1,23m x 1,48m

2,50 W/m²K 1,38 W/m²K 1,61 W/m²K

Baukörper-Dokumentation Stiege 5

Projekt: Wr.Neustadt - Werftgasse Datum: 4. September 2012 Blatt 47

Baukörper: Stiege 5

Beheizte Hülle

Bezeichnung	Anz.	Breite	Höhe		Bauteil	Ausrichtung	Zus	tand	Brutto- Fläche	Netto- Fläche
AW NO	1	11,86 m	3,27 m		F1: AW	Nord-Ost	wa	arm /	197,57 m ²	178,03 m ²
				Woh	nung_PP			ıßen 📗		
		ge/Zuschlä	ge		Zeichnun	-	Parameter	Anz.	Einzelfl.	Gesamtfl.
	rechte	er Teil			g W	a = b =	57,41 m 3,27 m	1	187,73 m²	187,73 m²
	Stgh 2	2.OG			g	a = b =	8,85 m 3,27 m	1	-28,94 m²	-28,94 m²
	F01D:	80/145						5	-1,16 m ²	-5,80 m ²
		90/210						6	-1,89 m ²	-11,34 m ²
	F05D:	60/80						5	-0,48 m²	-2,40 m ²
		lags/Abzug	gs Wand-F	Täche						158,79 m ²
		er-Fläche								-8,20 m²
	Tür-Fl						1			-11,34 m²
AW SW	1	57,34 m	9,47 m	Wohr	F1: AW	Süd-West	au	rm / ßen	621,52 m²	440,13 m²
	Abzüg	<u>je/Zuschläg</u>	ge		Zeichnung	g P a =	arameter 11,86 m	<u>Anz.</u> 1	Einzelfl. 78,51 m²	Gesamtfl. 78,51 m ²
						b =	6,62 m			
	F03A:	170/230						4	-3,91 m ²	-15,64 m ²
	F02A:	90/230						8	-2,07 m ²	-16,56 m ²
		170/230						6	-3,91 m²	-23,46 m ²
		90/230						18	-2,07 m ²	-37,26 m ²
		211/220						1	-4,64 m²	-4,64 m²
		314/220						1	-6,91 m²	-6,91 m ²
		90/230						10	-2,07 m²	-20,70 m ²
		80/220 90/230						<u>2</u> 4	-3,96 m ² -2,07 m ²	-7,92 m ² -8,28 m ²
		170/230						6	-3,91 m ²	-0,26 m ²
		90/230						8	-2,07 m ²	-16,56 m ²
		lags/Abzug	as Wand-F	Täche					_,_,	78,51 m ²
		er-Fläche	,							-181,39 m ²
AW NW	1	8,75 m	6,62 m	Wohr	F1: AW nung_PP	Nord-West	l .	rm / ßen	57,93 m²	55,61 m²
		ge/Zuschläg	ge		Zeichnung	g P	arameter		Einzelfl.	Gesamtfl.
		80/145						2	-1,16 m²	-2,32 m²
		er-Fläche					I			-2,32 m²
AW SO	1	3,56 m	9,47 m		F1: AW	Süd-Ost	au	rm / ßen	33,71 m²	33,71 m²
DE über PKW-Stellplätze linker Teil	1	11,86 m	8,75 m	E9: Stellplätz		-	Durchf		77,35 m²	77,35 m²
	Abzüg	je/Zuschlä	ge		Zeichnung	g P	arameter	Anz.	Einzelfl.	Gesamtfl.

Baukörper-Dokumentation Stiege 5

Projekt: Wr.Neustadt - Werftgasse Datum: 4. September 2012 Blatt 48

Baukörper: Stiege 5

Bezeichnung	Anz.	Länge	Breite		Bauteil	Ausrichtung	7us	tand	Brutto-	Netto-
Dozoicimang	7 11.2.	Lango	Brono		Dauton	, taonontang		iana	Fläche	Fläche
DE über PKW-Stellplätze	Abzüc	e/Zuschläg	ne		Zeichnung	F	Parameter	Anz.	Einzelfl.	Gesamtfl.
linker Teil (Fortsetzung)	DE üb	er KIWA				a =	5,36 m		-26,42 m ²	-26,42 m²
-					a	b =	4,93 m			
					b					
					<i>\(\(\(\)</i>					
	7	I = / A I	- \\/ F	19 -1						00.403
DE über KG rechter Teil	1 Zuscn	lags/Abzug		iacne	DE über			rm /	402 22 m²	-26,42 m ²
DE uber KG rechter Tell	1	57,34 m	8,75 m		G/TG_bp	-	unbehei	rm /	483,32 m²	483,32 m²
				IXC	3/1G_bb			eller		
							1	cke		
	Abzüg	e/Zuschläg	ie		Zeichnung	Р	arameter	Anz.	Einzelfl.	Gesamtfl.
	Abzug	KIWA-Rau	ım		Zolomiang	a =	4,83 m	1	-18,40 m ²	-18,40 m ²
					a	b =	3,81 m	-		
							-,-			
					//////////////////////////////////////					
	Zusch	lags/Abzug								-18,40 m ²
Flachdach	1	11,86 m	8,75 m		\1: Dach	Horizontal		rm /	605,50 m ²	605,50 m ²
				be	kiest_bp	_		ßen		
		e/Zuschläg	je		Zeichnung		arameter	Anz.	Einzelfl.	Gesamtfl.
	rechte	r l eil				a =	57,34 m	1	501,73 m ²	501,73 m ²
					g.,,,,,,a	b =	8,75 m			
					<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>					
					<i>(////////////////////////////////////</i>					
	Zugeb	lags/Abzug	o Mond F	Tächo						E01 72 m2
DE 1.OG über KIWA	1	4,83 m	3,81 m		DE über	_	wa	rm /	44,83 m²	501,73 m ² 44,83 m ²
DE 1.00 abol Riva	'	4,00 111	3,01111		(IWA_bp		unbehei	-	44,00 111	44,00 111
				1 (1111./11	avvi _bp		Nebenra			
							Decke o			
	Abzüg	e/Zuschläg	ie		Zeichnung	P	arameter	Anz.	Einzelfl.	Gesamtfl.
		linker Teil				a =	5,36 m	1	26,42 m²	26,42 m²
					ď	b =	4,93 m		-,	-,
							,			
					//////////////////////////////////////					
	Zusch	lags/Abzug	s Wand-F							26,42 m ²
AW NO Laubengang	1	57,34 m	6,20 m	F2: AW V		Nord-Ost	wa	rm /	397,02 m ²	357,72 m ²
				zu Lau	bengang			ßen		
		<u>ie/Zuschläg</u>	je		Zeichnung	P	arameter		Einzelfl.	Gesamtfl.
	AW lin	ıker Teil				a =	11,86 m	1	41,51 m²	41,51 m²
					a	b =	3,50 m			
					//////////////////////////////////////					
					<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>					
	FO4D:	00/4 45				1			1.052	6.75 ~ 2
		80/145				1		<u>5</u>	-1,35 m ²	-6,75 m ²
	F05B:	90/210						<u>5</u>	-1,89 m ² -0,48 m ²	-9,45 m ² -1,92 m ²
		80/145				+		6	-0,48 m ² -1,16 m ²	-1,92 m ²
		90/210						6	-1,16 m ²	-0,96 m ²
	F05C:							6	-1,89 m²	-11,34 III- -2,88 m ²
		lags/Abzug	s Wand-F	läche		1		U	U, -1 U III-	41,51 m ²
		er-Fläche	o rrana i							-18,51 m ²
	Tür-Fl									-20,79 m ²
										,

Baukörper-Dokumentation Stiege 5

Projekt: Wr.Neustadt - Werftgasse Datum: 4. September 2012 Blatt 49

Baukörper: Stiege 5

	8,75 m bzüge/Zuschlid zu Stgh 1.+2	9,47 m	F3: AW \	Bauteil Wohnung Stgh_bp Zeichnur	Ausrichtung InnenWand a = b =		irm /	Brutto- Fläche 169,73 m² Einzelfl. 57,93 m²	Netto- Fläche 168,09 m² Gesamtfl. 57,93 m²
At	ozüge/Zuschli / zu Stgh 1.+2	ige		Stgh_bp	ng F	unbehei Stieger Parameter 8,75 m	ztes nhau s Anz.	169,73 m² Einzelfl.	168,09 m ² Gesamtfl.
	zu Stgh 1.+2		zu		a =	Stieger Parameter 8,75 m	hau s Anz.		
	zu Stgh 1.+2			Zeichnur	a =	Parameter 8,75 m	S Anz.		
	zu Stgh 1.+2			Zeichnur	a =	8,75 m	Anz.		
	zu Stgh 1.+2						1	57,93 m²	57,93 m²
	zu Stah 2 O			a di	b =	6,62 m			
	zu Stah 2 O				b				
	zu Stah 2 O				~				
	zu Stah 2 O								
	zu Stah 2 O								
[IW	Zu Olym Z.O	G			a =	8,85 m	1	28,94 m²	28,94 m²
				0 7////////////////////////////////////	b =	3,27 m			
					h				
F0	5C: 60/80						1	-0,48 m²	-0,48 m ²
I —	1C: 80/145						1	-1,16 m²	-1,16 m ²
	schlags/Abzu	<u>ıgs Wand-F</u>	läche						86,86 m ²
IW 2-schalig zu Stgh 1	nster-Fläche	9,47 m	F10: IW 2	2 aabalia	InnenWand	wa	rm /	48,58 m²	-1,64 m ² 48,58 m ²
TW 2-scriding 20 Sign	5,13 m	9,47 111		Stiege 1	mnenvvanu	unbehei		40,56 111-	40,30 111
			Zu Otgii	Ollege 1		Stiegen			
							S		
IW 1	3,81 m	3,25 m		IW	InnenWand	wa	rm /	12,38 m²	12,38 m²
Gemeinschaftsraum/KIWA			Gemeinso			unbehei			
Ziegel	4.00	0.05	m/KIWA Z		1	Nebenra		45.70 2	45.70 2
IW 1 Gemeinschaftsraum/KIWA	4,83 m	3,25 m	Gemeinso	IW	InnenWand	wa unbehei		15,70 m ²	15,70 m ²
STB				STB bp		Nebenra			

Beheiztes Volumen

Bezeichnung	Тур	Zeichnung		Parameter	Anzahl	Abzug	Zuschlag
linker Teil	Kubus	b	a = b = c =	11,86 m 6,62 m 8,75 m	1		686,99 m³
rechter Teil	Kubus	a c	a = b = c =	57,34 m 9,47 m 8,75 m	1		4.751,34 m³
EG KIWA-Raum	Kubus	b	a = b = c =	4,83 m 3,25 m 3,81 m	1	59,81 m³	
Summe				•			5.378,52 m ³

Baukörper-Dokumentation Stiege 5

Projekt: Wr.Neustadt - Werftgasse Datum: 4. September 2012 Blatt 50

Baukörper: Stiege 5

Beheizte Brutto-Geschoßfläche

Bezeichnung	Anz.	Länge	Breite		Bauteil	Ausrichtung	Zust	tand	Brutto-	Netto-
									Fläche	Fläche
DE über PKW-Stellplätze linker Teil	1	11,86 m	8,75 m	E9:	DE über e EG_bp	-	wa Durcht	rm /	77,35 m ²	77,35 m ²
IIIIKEI TEII	Abzüd	ge/Zuschläg	ne	Stellplatz	Zeichnur	na P	arameter	Anz.	Einzelfl.	Gesamtfl.
		per KIWA	90		2010111101	a =	5,36 m	1		
					a	b =	4,93 m			
		lags/Abzuc		läche						-26,42 m ²
DE über KG rechter Teil	1	57,34 m	8,75 m		DE über G/TG_bp	-	wa unbehei	rm /	483,32 m ²	483,32 m ²
				, AC	5/1G_bp			eller		
								cke		
	Abzüg	ge/Zuschläg	ge		Zeichnun	g Pa	arameter	Anz.	Einzelfl.	Gesamtfl.
	Abzug	KIWA-Rai	um			a =	4,83 m	1	-18,40 m ²	-18,40 m ²
					V/////////////////////////////////////	b =	3,81 m			
						b				
	7	. I = / A I=	\A/l F	19 -1						40.402
DE EG/1.OG	1 Zusch	lags/Abzuc 57,34 m	s <u>vvand-F</u> 8,75 m	-iacne	E3: DE	_	wa	rm /	483,32 m²	-18,40 m ² 483,32 m ²
DE 20/1.00	'	07,04111	0,70111	Regelgesc				arm	400,02 111	400,02 111
	Abzüg	ge/Zuschläg	ge		Zeichnun	g Pa	arameter	Anz.	Einzelfl.	Gesamtfl.
	DE 1.0	OG über K	WA			a =	4,83 m	1	-18,40 m²	-18,40 m²
					V/////////////////////////////////////	b =	3,81 m			
						b				
	<u> </u>									
DE 1.OG/2.OG	∠usch	lags/Abzuc 11,86 m	<u>s Wand-F</u> 8,75 m	-läche	E3: DE		W(O)	rm /	605,50 m ²	-18,40 m ² 605,50 m ²
DE 1.0G/2.0G	'	11,00111	0,73111	Regelgesc		-		arm	005,50 111-	005,50 111-
	Abzüg	ge/Zuschläg	ge	1.090.9000	Zeichnun	g Pa	arameter	Anz.	Einzelfl.	Gesamtfl.
	rechte	er Teil				.a =	57,34 m	1	501,73 m ²	501,73 m ²
					V/////////////////////////////////////	b =	8,75 m			
						b				
DE 1.OG über KIWA		lags/Abzug			DE über		***=	rno /	44.00 2	501,73 m ²
DE 1.0G über Kıvva	1	4,83 m	3,81 m		(IWA_bp	-	unbehei	rm /	44,83 m²	44,83 m²
				1 (1111.71	SP		Nebenra			
							Decke o			
		<u>ge/Zuschläg</u> linker Teil	ge		Zeichnun	~	arameter		Einzelfl.	Gesamtfl.
	KIWA	iinker reii				a = b =	5,36 m 4,93 m	1	26,42 m²	26,42 m ²
							4,00 111			
						b				
	Zusch	ılags/Abzug	re Wand E	lächo						26,42 m²
Summe	Zuscii	nago/Abzut	jo vvariu-r	IUUIU						1.694,32 m ²
Reduktion										0,00 m ²
BGF										1.694,32 m ²

Baukörper-Dokumentation Stiege 5

Projekt: Wr.Neustadt - Werftgasse Datum: 4. September 2012 Blatt 51

Baukörper: Stiege 5

Unbeheizter Nebenraum

Bezeichnung	Anz.	Länge	Breite		Bauteil	-	Ausrichtung	Zust	and	Brutto-	Netto-
_										Fläche	Fläche
DE 1.OG über KIWA	1	4,83 m	3,81 m	3,81 m E9a:			DE über -		rm /	44,83 m ²	44,83 m ²
				Fahrr./k	(IWA_bp			unbehei	izter		
								Nebenra	aum		
								Decke o	ben		
	Abzüg	je/Zuschlä	ge		Zeichnu	ng	P	arameter	Anz.	Einzelfl.	Gesamtfl.
	KIWA	linker Teil					a =	5,36 m	1	26,42 m ²	26,42 m ²
					a	_	b =	4,93 m			
						þ					
					<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>	4					
	Zusch	<u>lags/Abzuç</u>	gs Wand-F	läche							26,42 m ²
IW	1	3,81 m	3,25 m		IW	I	nnenWand	war	m/	12,38 m²	12,38 m²
Gemeinschaftsraum/KIWA				Gemeinsc	haftsrau			unbehei	zter		
Ziegel				m/KIWA Z	iegel_bp			Nebenra	ıum		
IW	1	4,83 m	3,25 m		IW	- 1	nnenWand	war	m/	15,70 m ²	15,70 m ²
Gemeinschaftsraum/KIWA				Gemeinsc	haftsrau			unbeheiz	zter		
STB				m/KIWA	STB_bp			Nebenra	ıum		

Unbeheizter Keller

Bezeichnung	Anz.	Länge	Breite		Bauteil	Ausrichtung	Zust	and	Brutto- Fläche	Netto- Fläche
DE über KG rechter Teil	1	57,34 m			: DE über (G/TG_bp		warm / unbeheizter Keller Decke		483,32 m²	483,32 m²
	Abzüc	e/Zuschlä	ge		Zeichnur	ng P	arameter	Anz.	Einzelfl.	Gesamtfl.
	Abzug	KIWA-Ra	um			a =	4,83 m	1	-18,40 m ²	-18,40 m ²
						b =	3,81 m			
	Zusch	lags/Abzug	gs Wand-F	läche		•				-18,40 m ²

Unbeheiztes Stiegenhaus

Bezeichnung	Anz.	Breite	Höhe	Bauteil		Ausrichtung	richtung Zust		Brutto- Fläche	Netto- Fläche
IW zu Stgh	1	8,75 m	9,47 m	F3: AW Wohnung zu Stgh_bp		InnenWand	wa unbehei Stiegen	ztes	169,73 m²	168,09 m²
	Abzüge/Zuschläge			Zeichnun	g P	arameter	Anz.	Einzelfl.	Gesamtfl.	
IW zu Stgh 1.+2.OG				a = b =	8,75 m 6,62 m	1	57,93 m²	57,93 m²		

Baukörper-Dokumentation Stiege 5

Projekt: Wr.Neustadt - Werftgasse Datum: 4. September 2012 Blatt 52

Baukörper: Stiege 5

Bezeichnung	Anz.	Breite	Höhe		Bauteil	Ausrichtung	Zust	tand	Brutto- Fläche	Netto- Fläche
IW zu Stgh (Fortsetzung)	Abzüge/Zuschläge				Zeichnur	ig P	arameter	Anz.	Einzelfl.	Gesamtfl.
	IW zu Stgh 2.OG					a =	8,85 m	1	28,94 m ²	28,94 m ²
					a	b =	3,27 m			
						0				
	F05C:	60/80						1	-0.48 m²	-0,48 m²
		80/145						1	-1,16 m ²	-1,16 m ²
	Zuschlags/Abzugs Wand-Fläche									86,86 m ²
	Fenste	er-Fläche								-1,64 m ²
IW 2-schalig zu Stgh			F10: IW 2 zu Stgh		InnenWand	wai unbeheiz Stiegen	ztes	48,58 m²	48,58 m²	
								S		

Berechnet mit ECOTECH Software, Version 3.1. Ein Produkt der BuildDesk Österreich GmbH; Snr: ECT-20080616XXXH580253